Z Skrypty dla studentów Ekonofizyki UPGOW
(→Uwagi) |
(→Stacjonarność procesu stochastycznego) |
||
Linia 54: | Linia 54: | ||
==Stacjonarność procesu stochastycznego== | ==Stacjonarność procesu stochastycznego== | ||
+ | ===Stacjonarność w sensie szerokim=== | ||
;Definicja 3.3: Szereg czasowy <math> \{X_t, t \in \Z\}\ </math>, gdzie zbiór indeksów zdefiniowany jest jako <math> \Z = \{0, \pm 1, \pm 2,\cdots \}</math> nazywamy stacjonarnym (w sensie słabym) jeżeli spełnione są poniższe punkty | ;Definicja 3.3: Szereg czasowy <math> \{X_t, t \in \Z\}\ </math>, gdzie zbiór indeksów zdefiniowany jest jako <math> \Z = \{0, \pm 1, \pm 2,\cdots \}</math> nazywamy stacjonarnym (w sensie słabym) jeżeli spełnione są poniższe punkty | ||
Wersja z 16:27, 28 wrz 2010
Spis treści |
Elementy teorii prawdopodobieństwa
Procesy stochastyczne
Definicja i rola funkcji autokowariancji (autokorelacji)
Funkcja kowariancji
Do wyznaczania zależności pomiędzy zmiennymi losowymi użyteczna bywa funkcja kowariancji.
- Definicja 3.1
- Dla dwóch zmiennych losowych \( \{X_t, t \in T\}\ \) oraz \( \{Y_s, s \in T\}\ \) funkcja
- \( \begin{align} ~cov(X(r),Y(s)) = &E[(X_r - EX_r)(Y_s - EY_s)] = \\ &E(X_tY_s) - EX_t EY_s ~~~\text{dla} ~~~ r,s \in T \end{align} \)
określa liniową zależność pomiędzy powyższymi zmiennymi losowymi. Stopień współzależności owych zmiennych losowych można podać za pomocą tzw. współczynnika korelacji Pearsona \( r_{XY}\ \)
- \( cov (X, Y) = r_{XY} \sigma_{X} \sigma_{Y}. \)
Wartość współczynnika korelacji Pearsona mieści się w przedziale domkniętym [-1, 1]. Im większa jego wartość bezwzględna, tym silniejsza jest zależność zmiennych losowych między zmiennymi. \(r_{XY} = 0\) oznacza brak liniowej zależności między cechami, \(r_{XY} = 1\) oznacza dokładną dodatnią liniową zależność między cechami, natomiast \(r_{XY} = -1\) oznacza dokładną ujemną liniową zależność między cechami, tzn. jeżeli zmienna \(X\) rośnie, to \(Y\) maleje i na odwrót. Współczynnik korelacji liniowej można traktować jako znormalizowaną kowariancję. Korelacja przyjmuje zawsze wartości w zakresie [-1, 1], co pozwala uniezależnić analizę od dziedziny badanych zmiennych.
Funkcja autokowariancji
W przypadku gdy analizujemy szereg czasowy opisywany poprzez ewolucję jednej zmiennej losowej możemy mówić najwyżej o funkcji autokowariancji. Dla szeregu czasowego \( \{X_t, t \in T\}\ \) możemy taką funkcję zdefiniować następująco.
- Definicja 3.2
- Jeżeli \( \{X_t, t \in T\}\ \) jest procesem dla którego wariancja zmiennej losowej dla każdej chwili czasu \( \sigma_{X_t} \) jest skończona, wtedy funkcja autokowariancji procesu \( \{X_t\}\ \) zdefiniowana jest jako
- \( \begin{align} ~\gamma_X(r,s) = &K_{XX}(r,s) = cov(X(r),X(s)) = cov(X_r,X_s) = \\ &E[(X_r - EX_r)(X_s - EX_s)] = E(X_tX_s) - EX_t EX_s ~~~\text{dla} ~~~ r,s \in T. \end{align} \)
Analogicznie do funkcji kowariancji, autokowariancja określa liniową zależność pomiędzy tą samą zmienną losową w dwóch chwilach czasu t i s.
Funkcja autokorelacji
Jeżeli dowolny proces losowy \( \{X_r, r \in T\}\ \) posiada wartość oczekiwaną \( EX_r \) oraz wariancję \( \sigma_{X} \) to możemy zdefiniować funkcję autokorelacji procesu (swego rodzaju unormowaną funkcję autokowariancji) jako
- Definicja 3.4
- \( \rho(r,s) \)
Stacjonarność procesu stochastycznego
Stacjonarność w sensie szerokim
- Definicja 3.3
- Szereg czasowy \( \{X_t, t \in \Z\}\ \), gdzie zbiór indeksów zdefiniowany jest jako \( \Z = \{0, \pm 1, \pm 2,\cdots \}\) nazywamy stacjonarnym (w sensie słabym) jeżeli spełnione są poniższe punkty
- \( \begin{align} (i) &~E | X_t |^2 < \infty ~~~ \text{dla} ~~~ t \in \Z \\ (ii) &~E X_t = m ~~~ \text{dla} ~~~ t \in \Z \\ (iii)&~\gamma_X(r,s) = \gamma_X(r+t,s+t) ~~~ \text{dla} ~~~ t \in \Z \end{align} \)
- Uwagi
- Powyższa definicja odnosi się do tak zwanej słabej stacjonarności, stacjonarności w szerszym sensie lub stacjonarności rzędu dwa. Ma ona zastosowanie najczęściej podczas analizy szeregów czasowych. Na tym kursie analizy szeregów czasowych będzie to podstawowa definicja jaką będziemy rozpatrywali.
- Jeżeli proces \( \{X_t, t \in \Z\}\ \) jest stacjonarny
- \( \gamma_X(r+t,s+t) = \gamma_X(r-s,0) \!\)
- często lepiej jest tak przedefiniować funkcję autokowariancji aby była funkcją tylko jednej zmiennej
- \( \gamma_X(r-s,0) = \gamma_X(h,0) = cov(X_{t+h},X_h) = \gamma_X(h), \, \mbox{ gdzie } \, h = r - s, \, h,r,s \in \Z \)
- Wtedy \( h \) możemy utożsamić z opóźnieniem w czasie dwóch zmiennych losowych \( X_{t+h}, X_t\ \). Wtedy jednoargumentowa funkcja autokorelacji procesu losowego \( \{X_t, t \in \Z\}\ \) zdefiniowana będzie jako
- \( : \rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}, \, h \in \Z. : \)
- W powyższej definicji nie musimy ograniczać się do \( \Z \) jako dziedziny czasu. Jednak definicja ograniczająca do liczb całkowitych jest łatwiejsza do podania, a w przypadku szeregów czasowych całkowicie wystarczająca, ponieważ na naszych zajęciach "czas" będzie zawsze indeksowany.
Stacjonarność w sensie ścisłym
Dla porównania podamy teraz definicję stacjonarności w sensie ścisłym.
- Definicja
- Stacjonarność ścisła (wąskie pojęcie).
Proces stochastyczny (bądź szereg losowy) jest stacjonarny w sensie ścisłym, gdy zmienne losowe \(X(t)\ \) oraz \( X (t+\epsilon)\ \) mają te same rozkłady n-wymiarowe (rozkłady łączne)
- \( f(x_1, t_1; x_2, t_2;...; x_n, t_n) = f(x_1, t_{1+\epsilon}; x_2, t_{2+\epsilon};...; x_n, t_{n+\epsilon})\ \)
dla dowolnych \(n\) i \(\epsilon\).
- Uwagi
- a
- b