MKZR:Stochastyczne równania różniczkowe

Z Skrypty dla studentów Ekonofizyki UPGOW

Stochastyczne równania różniczkowe

W tym rozdziale zostaną opisane metody numeryczne, które służa do rozwiązywania stochastycznych równań różniczkowych typu:

\(\frac{dX(t)}{dt} = F(X(t), t) + G(X(t), t)\Gamma(t)\)

gdzie F i G to dowolne funkcje, a \(\Gamma(t)\) jest procesem losowym. Najczęstszym przypadek to taki w którym \(\Gamma(t)\) to biały szum Gaussowski. Tak zapisane równanie nie jest precyzyjnie określone ze względu na dylemat Stratonowicza-Ito. Dlatego poprawne jest zapisanie równanie Ito w postaci:

\(dX(t)= F(X(t), t)dt + G(X(t), t) dW(t)\;\)

Nie zmienia to ogólności, gdyż jak wiadomo każde równanie zapisane w interpretacji Stratonowicza ma swój odpowiednik Ito. Dla potrzeb metod numerycznych będziemy rozpatrywać zawsze równania Ito, a jeśli pojawią się równania Stratonowicza to będziemy je transpormować do postaci Ito.



Schemat Eulera dla równania z szumem addytywnym

Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych jest schemat Eulera. Część deterministyczną równania stochastycznego traktujemy w taki sam sposób jak w schemacie Eulera dla równań różniczkowych zwyczajnych. Aby całkować część stochastyczną potrzebujemy formuły na przyrost skończony procesu Wienera:

\(dW(t) = \Gamma(t) dt \; \; \; \; \mbox{lub} \; \; \; \; W(t) = \int_0^t \Gamma(s) \; ds\)

Proces Wienera

Proces Wienera jest rozwiązaniem następującego stochastycznego równania różniczkowego:

\(dX(t)= dW(t)\;\).


Jego realizacja jest funkcją ciągłą, ale jednocześnie nigdzie nie jest różniczkowalna. Przyrost \(W(t_2) - W(t_1)\) jest zmienna losową gaussowską o zerowej wartości średniej i wariancji \( = 2D(t_2 - t_1) \).

Całkując powy