Analiza Szeregów Czasowych/Procesy stochastyczne

Z Skrypty dla studentów Ekonofizyki UPGOW

Analiza Szeregów Czasowych

Spis treści

Elementy teorii prawdopodobieństwa

Procesy stochastyczne

Definicja i rola funkcji autokowariancji (autokorelacji)

Funkcja kowariancji

Do wyznaczania zależności pomiędzy zmiennymi losowymi użyteczna bywa funkcja kowariancji.

Definicja 3.1
Dla dwóch zmiennych losowych \( \{X_t, t \in T\}\ \) oraz \( \{Y_s, s \in T\}\ \) funkcja
\( \begin{align} ~cov(X(r),Y(s)) = &E[(X_r - EX_r)(Y_s - EY_s)] = \\ &E(X_tY_s) - EX_t EY_s ~~~\text{dla} ~~~ r,s \in T \end{align} \)

określa liniową zależność pomiędzy powyższymi zmiennymi losowymi. Stopień współzależności owych zmiennych losowych można podać za pomocą tzw. współczynnika korelacji Pearsona \( r_{XY}\ \)

\( cov (X, Y) = r_{XY} \sigma_{X} \sigma_{Y}. \)

Wartość współczynnika korelacji Pearsona mieści się w przedziale domkniętym [-1, 1]. Im większa jego wartość bezwzględna, tym silniejsza jest zależność zmiennych losowych między zmiennymi. \(r_{XY} = 0\) oznacza brak liniowej zależności między cechami, \(r_{XY} = 1\) oznacza dokładną dodatnią liniową zależność między cechami, natomiast \(r_{XY} = -1\) oznacza dokładną ujemną liniową zależność między cechami, tzn. jeżeli zmienna \(X\) rośnie, to \(Y\) maleje i na odwrót. Współczynnik korelacji liniowej można traktować jako znormalizowaną kowariancję. Korelacja przyjmuje zawsze wartości w zakresie [-1, 1], co pozwala uniezależnić analizę od dziedziny badanych zmiennych.

Funkcja autokowariancji

W przypadku gdy analizujemy szereg czasowy opisywany poprzez ewolucję jednej zmiennej losowej możemy mówić najwyżej o funkcji autokowariancji. Dla szeregu czasowego \( \{X_t, t \in T\}\ \) możemy taką funkcję zdefiniować następująco.

Definicja 3.2
Jeżeli \( \{X_t, t \in T\}\ \) jest procesem dla którego wariancja zmiennej losowej dla każdej chwili czasu \( \sigma_{X_t} \) jest skończona, wtedy funkcja autokowariancji procesu \( \{X_t\}\ \) zdefiniowana jest jako
\( \begin{align} ~\gamma_X(r,s) = &K_{XX}(r,s) = cov(X(r),X(s)) = cov(X_r,X_s) = \\ &E[(X_r - EX_r)(X_s - EX_s)] = E(X_tX_s) - EX_t EX_s ~~~\text{dla} ~~~ r,s \in T. \end{align} \)

Analogicznie do funkcji kowariancji, autokowariancja określa liniową zależność pomiędzy tą samą zmienną losową w dwóch chwilach czasu t i s.

Funkcja autokorelacji

Jeżeli dowolny proces losowy \( \{X_r, r \in T\}\ \) posiada wartość oczekiwaną \( EX_r \) oraz wariancję \( \sigma_{X} \) to możemy zdefiniować funkcję autokorelacji procesu (swego rodzaju unormowaną funkcję autokowariancji) jako

Definicja 3.4
\( \rho(r,s) \)

Stacjonarność procesu stochastycznego

Definicja 3.3
Szereg czasowy \( \{X_t, t \in \Z\}\ \), gdzie zbiór indeksów zdefiniowany jest jako \( \Z = \{0, \pm 1, \pm 2,\cdots \}\) nazywamy stacjonarnym (w sensie słabym) jeżeli spełnione są poniższe punkty
\( \begin{align} (i) &~E | X_t |^2 < \infty ~~~ \text{dla} ~~~ t \in \Z \\ (ii) &~E X_t = m ~~~ \text{dla} ~~~ t \in \Z \\ (iii)&~\gamma_X(r,s) = \gamma_X(r+t,s+t) ~~~ \text{dla} ~~~ t \in \Z \end{align} \)

Uwagi

  1. Powyższa definicja odnosi się do tak zwanej słabej stacjonarności, stacjonarności w szerszym sensie lub stacjonarności rzędu dwa. Ma ona zastosowanie najczęściej podczas analizy szeregów czasowych. Na tym kursie analizy szeregów czasowych będzie to podstawowa definicja jaką będziemy rozpatrywali.
  2. Jeżeli proces \( \{X_t, t \in \Z\}\ \) jest stacjonarny
\( \gamma_X(r+t,s+t) = \gamma_X(r-s,0) \!\)
często lepiej jest tak przedefiniować funkcję autokowariancji aby była funkcją tylko jednej zmiennej
\( \gamma_X(r-s,0) = \gamma_X(h,0) = cov(X_{t+h},X_h) = \gamma_X(h), \, \mbox{ gdzie } \, h = r - s, \, h,r,s \in \Z \)
Wtedy \( h \) możemy utożsamić z opóźnieniem w czasie dwóch zmiennych losowych \( X_{t+h}, X_t\ \). Wtedy jednoargumentowa funkcja autokorelacji procesu losowego \( \{X_t, t \in \Z\}\ \) zdefiniowana będzie jako
\( : \rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}, \, h \in \Z. : \)
  1. W powyższej definicji nie musimy ograniczać się do \( \Z \) jako dziedziny czasu. Jednak definicja ograniczająca do liczb całkowitych jest łatwiejsza do podania, a w przypadku szeregów czasowych całkowicie wystarczająca, ponieważ na naszych zajęciach "czas" będzie zawsze indeksowany.

Stacjonarność w sensie ścisłym

Dla porównania podamy teraz definicję stacjonarności w sensie ścisłym.

Definicja
Stacjonarność ścisła (wąskie pojęcie).

Proces stochastyczny (bądź szereg losowy) jest stacjonarny w sensie ścisłym, gdy zmienne losowe \(X(t)\ \) oraz \( X (t+\epsilon)\ \) mają te same rozkłady n-wymiarowe (rozkłady łączne)

\( f(x_1, t_1; x_2, t_2;...; x_n, t_n) = f(x_1, t_{1+\epsilon}; x_2, t_{2+\epsilon};...; x_n, t_{n+\epsilon})\ \)

dla dowolnych \(n\) i \(\epsilon\).

Uwagi
  1. a
  2. b