Analiza Szeregów Czasowych/Stacjonarność

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
(Stacjonarność procesów stochastycznych)
(Stacjonarność procesów stochastycznych)
Linia 2: Linia 2:
==Stacjonarność procesów stochastycznych==
==Stacjonarność procesów stochastycznych==
-
Do wyznaczania zależności pomiędzy zmiennymi losowymi użyteczna bywa funkcja kowariancji. W przypadku gdy analizujemy szereg czasowy opisywany poprzez ewolucję jednej zmiennej losowej możemy mówić najwyżej o funkcji autokowariancji.  
+
Do wyznaczania zależności pomiędzy zmiennymi losowymi użyteczna bywa funkcja kowariancji.  
 +
 
 +
;Definicja 3.1: Dla dwóch zmiennych losowych <math> \{X_t, t \in T\}\ </math> oraz <math> \{Y_s, s \in T\}\ </math> funkcja
 +
 
 +
: <math>
 +
\begin{align}
 +
~cov(X(r),Y(s)) =
 +
&E[(X_r - EX_r)(Y_s - EY_s)] = E(X_tY_s) - EX_t EY_s ~~~\text{dla} ~~~ r,s \in T
 +
\end{align}
 +
</math>
 +
 
 +
określa liniową zależność pomiędzy powyższymi zmiennymi losowymi. Stopień współzależności owych zmiennych losowych można podać za pomocą tzw. współczynnika korelacji Pearsona
 +
 
 +
:<math>
 +
cov (X, Y) = corr(X, Y) \sigma_X \sigma_Y.
 +
</math>
 +
 
 +
W przypadku gdy analizujemy szereg czasowy opisywany poprzez ewolucję jednej zmiennej losowej możemy mówić najwyżej o funkcji autokowariancji.  
Dla szeregu czasowego <math> \{X_t, t \in T\}\ </math> możemy taką funkcję zdefiniować następująco.
Dla szeregu czasowego <math> \{X_t, t \in T\}\ </math> możemy taką funkcję zdefiniować następująco.
-
;Definicja 3.1
+
;Definicja 3.2: Jeżeli <math> \{X_t, t \in T\}\ </math> jest procesem dla którego wariancja zmiennej losowej dla każdej chwili czasu <math> \sigma_{X_t} </math> jest skończona, wtedy funkcja autokowariancji procesu <math> \{X_t\}\ </math> zdefiniowana jest jako
-
Jeżeli <math> \{X_t, t \in T\}\ </math> jest procesem dla którego wariancja zmiennej losowej dla każdej chwili czasu <math> \sigma_{X_t} </math> jest skończona, wtedy funkcja autokowariancji procesu <math> \{X_t\}\ </math> zdefiniowana jest jako
+
: <math>  
: <math>  

Wersja z 12:57, 23 wrz 2010

Analiza Szeregów Czasowych

Stacjonarność procesów stochastycznych

Do wyznaczania zależności pomiędzy zmiennymi losowymi użyteczna bywa funkcja kowariancji.

Definicja 3.1
Dla dwóch zmiennych losowych \( \{X_t, t \in T\}\ \) oraz \( \{Y_s, s \in T\}\ \) funkcja
\( \begin{align} ~cov(X(r),Y(s)) = &E[(X_r - EX_r)(Y_s - EY_s)] = E(X_tY_s) - EX_t EY_s ~~~\text{dla} ~~~ r,s \in T \end{align} \)

określa liniową zależność pomiędzy powyższymi zmiennymi losowymi. Stopień współzależności owych zmiennych losowych można podać za pomocą tzw. współczynnika korelacji Pearsona

\[ cov (X, Y) = corr(X, Y) \sigma_X \sigma_Y. \]

W przypadku gdy analizujemy szereg czasowy opisywany poprzez ewolucję jednej zmiennej losowej możemy mówić najwyżej o funkcji autokowariancji. Dla szeregu czasowego \( \{X_t, t \in T\}\ \) możemy taką funkcję zdefiniować następująco.

Definicja 3.2
Jeżeli \( \{X_t, t \in T\}\ \) jest procesem dla którego wariancja zmiennej losowej dla każdej chwili czasu \( \sigma_{X_t} \) jest skończona, wtedy funkcja autokowariancji procesu \( \{X_t\}\ \) zdefiniowana jest jako
\( \begin{align} ~\gamma_X(r,s) = &K_{XX}(r,s) = cov(X(r),X(s)) = cov(X_r,X_s) = \\ &E[(X_r - EX_r)(X_s - EX_s)] = E(X_tX_s) - EX_t EX_s ~~~\text{dla} ~~~ r,s \in T \end{align} \)
Definicja 3.3
Szereg czasowy \( \{X_t, t \in \Z\}\ \), gdzie zbiór indeksów zdefiniowany jest jako \( \Z = \{0, \pm 1, \pm 2,\cdots \}\) nazywamy stacjonarnym (w sensie słabym) jeżeli spełnione są poniższe punkty
\( \begin{align} (i) &~E | X_t |^2 < \infty ~~~ \text{for all} ~~~ t \in \Z \\ (ii) &~E X_t = m ~~~ \text{for all} ~~~ t \in \Z \\ (iii)&~\gamma_X(r,s) = \gamma_X(r+t,s+t) ~~~ \text{for all} ~~~ t \in \Z \end{align} \)

Uwagi

  1. Powyższa definicja odnosi się do tak zwanej słabej stacjonarności, stacjonarności w szerszym sensie lub stacjonarności rzędu dwa. Ma ona zastsowanie najczęściej podczas analizy szeregów czasowych. Na tym kursie analizy szeregów czasowych będzie to podstawowa definicja jaką będziemy rozpatrywali.
  2. Punkt \((iii)\ \) często zapisuje się w postaci
\( \gamma_X(r+t,s+t) = \gamma_X(r-s,0) \!\)
lub krótko
\( \gamma_X(r-s,0) = \gamma(\tau) \, \mbox{ gdzie } \, \tau = t_1 - t_2 \)