Z Skrypty dla studentów Ekonofizyki UPGOW
(→Proces Wienera) |
(→Stochastyczne równania różniczkowe) |
||
Linia 6: | Linia 6: | ||
gdzie F i G to dowolne funkcje, a <math>\Gamma(t)</math> jest procesem losowym. | gdzie F i G to dowolne funkcje, a <math>\Gamma(t)</math> jest procesem losowym. | ||
- | + | Najczęstszym przypadek to taki w którym <math>\Gamma(t)</math> to biały szum Gaussowski. Tak zapisane równanie nie jest precyzyjnie określone ze względu na [[PIZL:Stochastyczne_równania_różniczkowe#Dylemat_Stratonowicza-Ito|dylemat Stratonowicza-Ito]]. | |
+ | Dlatego poprawne jest zapisanie równanie Ito w postaci: | ||
+ | <math>dX(t)= F(X(t), t)dt + G(X(t), t) dW(t)\;</math> | ||
+ | Nie zmienia to ogólności, gdyż jak wiadomo każde równanie zapisane w interpretacji Stratonowicza ma swój odpowiednik Ito. Dla potrzeb metod numerycznych będziemy rozpatrywać zawsze równania Ito, a jeśli pojawią się równania Stratonowicza to będziemy je transpormować do postaci Ito. | ||
- | <math> | + | |
+ | |||
+ | === Schemat Eulera dla równania z szumem addytywnym === | ||
+ | |||
+ | Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych jest schemat Eulera. Część deterministyczną równania stochastycznego traktujemy w taki sam sposób jak w schemacie Eulera dla równań różniczkowych zwyczajnych. | ||
+ | |||
+ | <math>dW(t) = \Gamma(t) dt \; \; \; \; \mbox{lub} \; \; \; \; W(t) = \int_0^t \Gamma(s) \; ds</math> | ||
+ | |||
Linia 26: | Linia 36: | ||
Całkując powy | Całkując powy | ||
- | |||
- | |||
- | |||
- | |||
- |
Wersja z 06:30, 15 kwi 2010
Stochastyczne równania różniczkowe
W tym rozdziale zostaną opisane metody numeryczne, które służa do rozwiązywania stochastycznych równań różniczkowych typu:
\(\frac{dX(t)}{dt} = F(X(t), t) + G(X(t), t)\Gamma(t)\)
gdzie F i G to dowolne funkcje, a \(\Gamma(t)\) jest procesem losowym. Najczęstszym przypadek to taki w którym \(\Gamma(t)\) to biały szum Gaussowski. Tak zapisane równanie nie jest precyzyjnie określone ze względu na dylemat Stratonowicza-Ito. Dlatego poprawne jest zapisanie równanie Ito w postaci:
\(dX(t)= F(X(t), t)dt + G(X(t), t) dW(t)\;\)
Nie zmienia to ogólności, gdyż jak wiadomo każde równanie zapisane w interpretacji Stratonowicza ma swój odpowiednik Ito. Dla potrzeb metod numerycznych będziemy rozpatrywać zawsze równania Ito, a jeśli pojawią się równania Stratonowicza to będziemy je transpormować do postaci Ito.
Schemat Eulera dla równania z szumem addytywnym
Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych jest schemat Eulera. Część deterministyczną równania stochastycznego traktujemy w taki sam sposób jak w schemacie Eulera dla równań różniczkowych zwyczajnych.
\(dW(t) = \Gamma(t) dt \; \; \; \; \mbox{lub} \; \; \; \; W(t) = \int_0^t \Gamma(s) \; ds\)
Proces Wienera
Proces Wienera jest rozwiązaniem następującego stochastycznego równania różniczkowego:
\(dX(t)= dW(t)\;\).
Jego realizacja jest funkcją ciągłą, ale jednocześnie nigdzie nie jest różniczkowalna. Przyrost \(W(t_2) - W(t_1)\) jest zmienna losową gaussowską o zerowej wartości średniej i wariancji \( = 2D(t_2 - t_1) \).
Całkując powy