MKZR:sandbox

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
(Obligacja ze stałym kuponem)
(Obligacja ze stałym kuponem)
 
(Nie pokazano 30 wersji pomiędzy niniejszymi.)
Linia 1: Linia 1:
-
====Obligacja ze stałym kuponem====
+
===Obligacja ze stałym kuponem===
-
 
+
Mamy obligację, której emitent zobowiązuje się do płacenia odsetek  regularnie raz do roku i zamierza zwrócić  zaciągnięte  zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|wzorem]]
Mamy obligację, której emitent zobowiązuje się do płacenia odsetek  regularnie raz do roku i zamierza zwrócić  zaciągnięte  zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|wzorem]]
Linia 12: Linia 11:
<source lang="matlab">
<source lang="matlab">
function P0=Bond_Fair_Price(PN,r,C,n)
function P0=Bond_Fair_Price(PN,r,C,n)
-
   P0 = sum ( C./(1+r).^[1:(n-1)] ) + PN/(1+r)^n;
+
   P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
endfunction
endfunction
 +
</source>
 +
 +
[[Plik:fair_price.png|thumb|360px|Wykres zależności wartości obligacji od stopy procentowej]]
 +
<source lang="matlab">
 +
r=linspace(0.01,0.5,25)
 +
for i=1:length(r)
 +
  p(i)=Bond_Fair_Price(100,r(i),7,25);
 +
endfor
 +
plot(r,p)
</source>
</source>
Linia 19: Linia 27:
<source lang="matlab">
<source lang="matlab">
   C./(1+r).^[1:(n-1)]
   C./(1+r).^[1:(n-1)]
-
</source>,
+
</source>
który tworzy wektor o elementach będących funkcją wskaźnika
który tworzy wektor o elementach będących funkcją wskaźnika
-
<math>\frac{C}{(1+r)^i} </math>.
+
<math>\frac{C}{(1+r)^i} </math> dla <math>i=1..(n-1)</math>.
-
 
+
 +
Dysponując tą funkcją [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|przykład]] ze skryptu Instrumenty Rynku można przeliczyć wywołując:
<source lang="matlab">
<source lang="matlab">
octave:157>P0=1
octave:157>P0=1
-
octave:157>PN=106
+
octave:157>PN=100
octave:157>r=0.07  
octave:157>r=0.07  
octave:157>C=6
octave:157>C=6
Linia 36: Linia 44:
</source>
</source>
-
===Rentowność obligacji===
+
W przypadku [[IRF:Analiza_i_wycena_instrument%C3%B3w#Obligacja__zerokuponowa|m wypłat kuponu]] w jednym roku mamy
 +
<source lang="matlab">
 +
function P0=Bond_Fair_Price_multi(PN,r,C,n,m)
 +
  P0 = sum ( (C/m)./(1+r/m).^[1:n] ) + PN/(1+r/m)^n;
 +
endfunction
 +
</source>
 +
 
 +
a w przypadku [[IRF:Analiza_i_wycena_instrument%C3%B3w#Wycena_przy_kapitalizacji_ci.C4.85g.C5.82ej|kapitalizacji ciągłej]] mamy:
 +
<source lang="matlab">
 +
function P0=Bond_Fair_Price_cont(PN,r,C,t)
 +
  P0 = sum ( (C)*exp(-r*t) ) + PN*exp(-r*t(length(x))
 +
endfunction
 +
</source>
-
'''Stopa zwrotu w terminie do wykupu ( Yield to maturity)'''
+
===Stopa zwrotu w terminie do wykupu (Yield to maturity)===
   
   
-
Do tego momenty  mówiąc o cenie obligacji używając wzoru:
+
Mamy równanie na wartość obligacji po n latach z m okresami wypłaty kupona:
<math>\  P_o=\sum\limits_{i=1}^n\frac{C_i/m}{(1+r/m)^i} +\frac{P_N}{(1+r/m)^n}</math>
<math>\  P_o=\sum\limits_{i=1}^n\frac{C_i/m}{(1+r/m)^i} +\frac{P_N}{(1+r/m)^n}</math>
-
Wyceniając ciąg płatności zakładaliśmy wartość stopy dyskontowej.
+
i chcemy rozwiązać je na stopę r.  
-
+
W tym celu przepiszmy do postaci:
-
Na rynku mamy sytuacje nieco inna  znamy  raczej bieżące, ceny rynkowe obligacji.  Aby wiec wycenić jej stopę zwrotu  czyli stopę od chwili nabycia do końca życia  instrumentu powinno się za stronę lewą równania wstawić wartość rynkowa  obligacji i wyliczyć stopę zwrotu.
+
-
Tak wyliczona stopa zwrotu to jest  nic innego niż wewnętrzna stopa zwrotu ( IRR) z inwestycji.
+
<math> P_0 (1+r/m)^n -\sum\limits_{i=1}^{n-1} \frac{C_{n-i}}{m}(1+r/m)^i + (-\frac{C_n}{m}-P_N) =0
 +
</math>
-
Stopa zwrotu w terminie do dnia wykupu ( YTM) liczona przy założeniu reinwestowania kuponów  po rentowności YTM.
+
Czyli mamy wielomian stopnia n-tego na <math>(1+r/m)</math> o współczynnikach:
-
Wylicza się  rozwiązując powyższe równanie względem r.
+
:<math> \displaystyle a_n=P_0</math>
 +
:<math> a_i=-\frac{C_{n-i}}{m}</math> dla i=2,3,...,n-1
 +
:<math> a_0=-\frac{C_n}{m}-P_N</math>
-
Łatwiej jest napisać  ''rozwiązując'' niż to zrobić. Nie znamy analitycznej postaci rozwiązania - stosuje się w tym przypadku metody przybliżone.
+
Analitycznie nie ma ogólnych wzorów na pierwiastki wielomianu dowolnego stopnia, ale instnieją procedury numeryczne, które bardzo dobrze wykonują to zadanie.
 +
<source lang="matlab">
 +
function r=YTM(P0,PN,m,n,C)
 +
  a = [P0, -1/m*fliplr(C)(2:length(C)), -C(n)/m-PN ];
 +
  myroots=roots(a);
 +
  r= ( max( myroots(find( imag(myroots)==0 )) ) - 1)*m;
 +
endfunction
 +
</source>
 +
Proszę zwrócić uwagę na dwie techniki:
-
=== Ryzyko ===
+
# wektor współczynników wielomianu jest generowany stosując kod wektorowy a w tym między innymi funkcję fliplr odwracającą wektor (x(i)=x(-i))
-
Duration według Macaulay’a - Duration obligacji przy kapitalizacji dyskretnej
+
# roots(a) wylicza pierwiastki wielomianu. Jest ich więcej niż potrzeba i część z nich jest zepspolona. Chodzi nam o największy pierwiastek rzeczywisty. W celu jego wybrania używamy funkcji find i max.
 +
 
 +
Dla przykładu policzmy stope 'r' dla pewnych zadanych wartości cen obligacji przy założeniu stałości kuponu (stąd C=5*ones(4)):
 +
<source lang="matlab">
 +
octave:211> r=YTM(100,186,1,4,5*ones(4))
 +
r = 0.20831
 +
</source>
 +
 
 +
===Duration według Macaulay’a ===
 +
 
 +
Duration obligacji przy kapitalizacji dyskretnej jest średnią ważoną czasów transakcji z wagami proporcjonalnymi ich zdyskontowanej wielkości (PV).
 +
Mamy więc wzór na wartość obligacji (fair price):
 +
 
 +
<math>P_0=\sum\limits_{i=1}^n\frac{C_i}{(1+r)^i} +\frac{P_N}{(1+r)^n}</math>
 +
 
 +
<math>D=(\sum\limits_{i=1}^n i\frac{C_i}{(1+r)^i} +n\frac{P_N}{(1+r)^n})/P_0</math>
 +
 
 +
 
 +
Wzór ten można zaimplementować w następujący sposób jako funkcję w matlab/GNU Octave:
 +
 
 +
<source lang="matlab">
 +
function [Duration,P0]=Duration(PN,r,C,n)
 +
 
 +
  P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
 +
  Duration = (sum ( C./(1+r).^[1:n].*[1:n] ) + n*PN/(1+r)^n )/P0;
 +
 
 +
endfunction
 +
</source>
 +
 
 +
Dla przykładu zbadajmy kilka podstawowych własności Duration:
 +
 
 +
Wiemy, że dla obligacji bezkuponowych duration jest równe czasowi wykupu. I rzeczywiście:
 +
 
 +
<source lang="matlab">
 +
Duration(100,0.1,0,7)
 +
ans =  7
 +
</source>
 +
[[Plik:duration.png|thumb|360px|Wykres zależności Duration od terminu lokaty (w latach) przy wyplatach kuponu raz do roku. Pięć krzywych odpowiada różnym wartościom stopy procentowej r=0.1,0.2,0.3,0.4,0.5]]
 +
Zobaczmy jak zachowuje się Duration przy różnych wartościach stopy procentowej w zależności od terminu lokaty.
 +
 
 +
<source lang="matlab">
 +
r=linspace(0.1,0.5,5)
 +
for j=1:length(r)
 +
  for i=1:20
 +
    d(i,j)=Duration(100,r(j),6,i);
 +
  endfor
 +
endfor
 +
plot(1:20,d)
 +
</source>

Aktualna wersja na dzień 14:44, 8 cze 2010


Obligacja ze stałym kuponem

Mamy obligację, której emitent zobowiązuje się do płacenia odsetek regularnie raz do roku i zamierza zwrócić zaciągnięte zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest wzorem

\(\ P_o=\sum\limits_{i=1}^n\frac{C}{(1+r)^i} +\frac{P_N}{(1+r)^n},\)

który możemy zaimplementować jako funkcję w matlabie:

function P0=Bond_Fair_Price(PN,r,C,n)
  P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
endfunction
Wykres zależności wartości obligacji od stopy procentowej
 r=linspace(0.01,0.5,25)
 for i=1:length(r)
  p(i)=Bond_Fair_Price(100,r(i),7,25); 
 endfor
 plot(r,p)

Proszę zwrócić uwagę na frangment:

   C./(1+r).^[1:(n-1)]

który tworzy wektor o elementach będących funkcją wskaźnika \(\frac{C}{(1+r)^i} \) dla \(i=1..(n-1)\).


Dysponując tą funkcją przykład ze skryptu Instrumenty Rynku można przeliczyć wywołując:

octave:157>P0=1
octave:157>PN=100
octave:157>r=0.07 
octave:157>C=6
octave:157>Bond_Fair_Price(PN,r,C,2)
ans =  98.192

W przypadku m wypłat kuponu w jednym roku mamy

function P0=Bond_Fair_Price_multi(PN,r,C,n,m)
  P0 = sum ( (C/m)./(1+r/m).^[1:n] ) + PN/(1+r/m)^n;
endfunction

a w przypadku kapitalizacji ciągłej mamy:

function P0=Bond_Fair_Price_cont(PN,r,C,t)
  P0 = sum ( (C)*exp(-r*t) ) + PN*exp(-r*t(length(x))
endfunction

Stopa zwrotu w terminie do wykupu (Yield to maturity)

Mamy równanie na wartość obligacji po n latach z m okresami wypłaty kupona:

\(\ P_o=\sum\limits_{i=1}^n\frac{C_i/m}{(1+r/m)^i} +\frac{P_N}{(1+r/m)^n}\)

i chcemy rozwiązać je na stopę r.

W tym celu przepiszmy do postaci:

\( P_0 (1+r/m)^n -\sum\limits_{i=1}^{n-1} \frac{C_{n-i}}{m}(1+r/m)^i + (-\frac{C_n}{m}-P_N) =0 \)

Czyli mamy wielomian stopnia n-tego na \((1+r/m)\) o współczynnikach:

\[ \displaystyle a_n=P_0\] \[ a_i=-\frac{C_{n-i}}{m}\] dla i=2,3,...,n-1 \[ a_0=-\frac{C_n}{m}-P_N\]

Analitycznie nie ma ogólnych wzorów na pierwiastki wielomianu dowolnego stopnia, ale instnieją procedury numeryczne, które bardzo dobrze wykonują to zadanie.

function r=YTM(P0,PN,m,n,C)
 
  a = [P0, -1/m*fliplr(C)(2:length(C)), -C(n)/m-PN ];
  myroots=roots(a);
  r= ( max( myroots(find( imag(myroots)==0 )) ) - 1)*m;
 
endfunction

Proszę zwrócić uwagę na dwie techniki:

  1. wektor współczynników wielomianu jest generowany stosując kod wektorowy a w tym między innymi funkcję fliplr odwracającą wektor (x(i)=x(-i))
  2. roots(a) wylicza pierwiastki wielomianu. Jest ich więcej niż potrzeba i część z nich jest zepspolona. Chodzi nam o największy pierwiastek rzeczywisty. W celu jego wybrania używamy funkcji find i max.

Dla przykładu policzmy stope 'r' dla pewnych zadanych wartości cen obligacji przy założeniu stałości kuponu (stąd C=5*ones(4)):

octave:211> r=YTM(100,186,1,4,5*ones(4))
r =  0.20831

Duration według Macaulay’a

Duration obligacji przy kapitalizacji dyskretnej jest średnią ważoną czasów transakcji z wagami proporcjonalnymi ich zdyskontowanej wielkości (PV). Mamy więc wzór na wartość obligacji (fair price):

\(P_0=\sum\limits_{i=1}^n\frac{C_i}{(1+r)^i} +\frac{P_N}{(1+r)^n}\)

\(D=(\sum\limits_{i=1}^n i\frac{C_i}{(1+r)^i} +n\frac{P_N}{(1+r)^n})/P_0\)


Wzór ten można zaimplementować w następujący sposób jako funkcję w matlab/GNU Octave:

function [Duration,P0]=Duration(PN,r,C,n)
 
  P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
  Duration = (sum ( C./(1+r).^[1:n].*[1:n] ) + n*PN/(1+r)^n )/P0;
 
endfunction

Dla przykładu zbadajmy kilka podstawowych własności Duration:

Wiemy, że dla obligacji bezkuponowych duration jest równe czasowi wykupu. I rzeczywiście:

Duration(100,0.1,0,7)
ans =  7
Wykres zależności Duration od terminu lokaty (w latach) przy wyplatach kuponu raz do roku. Pięć krzywych odpowiada różnym wartościom stopy procentowej r=0.1,0.2,0.3,0.4,0.5

Zobaczmy jak zachowuje się Duration przy różnych wartościach stopy procentowej w zależności od terminu lokaty.

r=linspace(0.1,0.5,5)
for j=1:length(r)
  for i=1:20 
    d(i,j)=Duration(100,r(j),6,i); 
  endfor
endfor
plot(1:20,d)