Processing math: 0%
MKZR:sandbox

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
m (Stopa zwrotu w terminie do wykupu (Yield to maturity))
(Obligacja ze stałym kuponem)
 
(Nie pokazano 23 wersji pomiędzy niniejszymi.)
Linia 1: Linia 1:
-
====Obligacja ze stałym kuponem====
+
===Obligacja ze stałym kuponem===
-
 
+
Mamy obligację, której emitent zobowiązuje się do płacenia odsetek  regularnie raz do roku i zamierza zwrócić  zaciągnięte  zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|wzorem]]
Mamy obligację, której emitent zobowiązuje się do płacenia odsetek  regularnie raz do roku i zamierza zwrócić  zaciągnięte  zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|wzorem]]
Linia 12: Linia 11:
<source lang="matlab">
<source lang="matlab">
function P0=Bond_Fair_Price(PN,r,C,n)
function P0=Bond_Fair_Price(PN,r,C,n)
-
   P0 = sum ( C./(1+r).^[1:(n-1)] ) + PN/(1+r)^n;
+
   P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
endfunction
endfunction
 +
</source>
 +
 +
[[Plik:fair_price.png|thumb|360px|Wykres zależności wartości obligacji od stopy procentowej]]
 +
<source lang="matlab">
 +
r=linspace(0.01,0.5,25)
 +
for i=1:length(r)
 +
  p(i)=Bond_Fair_Price(100,r(i),7,25);
 +
endfor
 +
plot(r,p)
</source>
</source>
Linia 29: Linia 37:
<source lang="matlab">
<source lang="matlab">
octave:157>P0=1
octave:157>P0=1
-
octave:157>PN=106
+
octave:157>PN=100
octave:157>r=0.07  
octave:157>r=0.07  
octave:157>C=6
octave:157>C=6
Linia 39: Linia 47:
<source lang="matlab">
<source lang="matlab">
function P0=Bond_Fair_Price_multi(PN,r,C,n,m)
function P0=Bond_Fair_Price_multi(PN,r,C,n,m)
-
   P0 = sum ( (C/m)./(1+r/n).^[1:n] ) + PN/(1+r/m)^n;
+
   P0 = sum ( (C/m)./(1+r/m).^[1:n] ) + PN/(1+r/m)^n;
endfunction
endfunction
</source>
</source>
Linia 49: Linia 57:
endfunction
endfunction
</source>
</source>
-
 
===Stopa zwrotu w terminie do wykupu (Yield to maturity)===
===Stopa zwrotu w terminie do wykupu (Yield to maturity)===
Linia 62: Linia 69:
W tym celu przepiszmy do postaci:
W tym celu przepiszmy do postaci:
-
<math> P_0 (1+r/m)^n -\sum\limits_{i=1}^{n-1} \frac{C_{n-i}}{m}(1+r/m)^i + (-\frac{C_n}{m}-P_N) =\sum\limits_{i=1}^n{(1+r/m)^i} +\frac{P_N}{(1+r/m)^n}</math>
+
<math> P_0 (1+r/m)^n -\sum\limits_{i=1}^{n-1} \frac{C_{n-i}}{m}(1+r/m)^i + (-\frac{C_n}{m}-P_N) =0
 +
</math>
 +
Czyli mamy wielomian stopnia n-tego na <math>(1+r/m)</math> o współczynnikach:
-
Wyceniając ciąg płatności zakładaliśmy wartość stopy dyskontowej.
+
:<math> \displaystyle a_n=P_0</math>
 +
:<math> a_i=-\frac{C_{n-i}}{m}</math> dla i=2,3,...,n-1
 +
:<math> a_0=-\frac{C_n}{m}-P_N</math>
-
+
Analitycznie nie ma ogólnych wzorów na pierwiastki wielomianu dowolnego stopnia, ale instnieją procedury numeryczne, które bardzo dobrze wykonują to zadanie.
-
Na rynku mamy sytuacje nieco inna  znamy  raczej bieżące, ceny rynkowe obligacji.  Aby wiec wycenić jej stopę zwrotu  czyli stopę od chwili nabycia do końca życia  instrumentu powinno się za stronę lewą równania wstawić wartość rynkowa  obligacji i wyliczyć stopę zwrotu.
+
<source lang="matlab">
 +
function r=YTM(P0,PN,m,n,C)
-
Tak wyliczona stopa zwrotu to jest  nic innego niż wewnętrzna stopa zwrotu ( IRR) z inwestycji.
+
  a = [P0, -1/m*fliplr(C)(2:length(C)), -C(n)/m-PN ];
 +
  myroots=roots(a);
 +
  r= ( max( myroots(find( imag(myroots)==0 )) ) - 1)*m;
-
Stopa zwrotu w terminie do dnia wykupu ( YTM)  liczona przy założeniu reinwestowania kuponów  po rentowności YTM.
+
endfunction
 +
</source>
 +
Proszę zwrócić uwagę na dwie techniki:
-
Wylicza się  rozwiązując powyższe równanie względem r.
+
# wektor współczynników wielomianu jest generowany stosując kod wektorowy a w tym między innymi funkcję fliplr odwracającą wektor (x(i)=x(-i))
 +
# roots(a) wylicza pierwiastki wielomianu. Jest ich więcej niż potrzeba i część z nich jest zepspolona. Chodzi nam o największy pierwiastek rzeczywisty. W celu jego wybrania używamy funkcji find i max.
-
Łatwiej jest napisać  ''rozwiązując'' niż to zrobić. Nie znamy analitycznej postaci rozwiązania - stosuje się w tym przypadku metody przybliżone.
+
Dla przykładu policzmy stope 'r' dla pewnych zadanych wartości cen obligacji przy założeniu stałości kuponu (stąd C=5*ones(4)):
 +
<source lang="matlab">
 +
octave:211> r=YTM(100,186,1,4,5*ones(4))
 +
r =  0.20831
 +
</source>
-
=== Ryzyko ===
+
===Duration według Macaulay’a ===
-
Duration według Macaulay’a - Duration obligacji przy kapitalizacji dyskretnej
+
 
 +
Duration obligacji przy kapitalizacji dyskretnej jest średnią ważoną czasów transakcji z wagami proporcjonalnymi ich zdyskontowanej wielkości (PV).
 +
Mamy więc wzór na wartość obligacji (fair price):
 +
 
 +
<math>P_0=\sum\limits_{i=1}^n\frac{C_i}{(1+r)^i} +\frac{P_N}{(1+r)^n}</math>
 +
 
 +
<math>D=(\sum\limits_{i=1}^n i\frac{C_i}{(1+r)^i} +n\frac{P_N}{(1+r)^n})/P_0</math>
 +
 
 +
 
 +
Wzór ten można zaimplementować w następujący sposób jako funkcję w matlab/GNU Octave:
 +
 
 +
<source lang="matlab">
 +
function [Duration,P0]=Duration(PN,r,C,n)
 +
 
 +
  P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
 +
  Duration = (sum ( C./(1+r).^[1:n].*[1:n] ) + n*PN/(1+r)^n )/P0;
 +
 
 +
endfunction
 +
</source>
 +
 
 +
Dla przykładu zbadajmy kilka podstawowych własności Duration:
 +
 
 +
Wiemy, że dla obligacji bezkuponowych duration jest równe czasowi wykupu. I rzeczywiście:
 +
 
 +
<source lang="matlab">
 +
Duration(100,0.1,0,7)
 +
ans =  7
 +
</source>
 +
[[Plik:duration.png|thumb|360px|Wykres zależności Duration od terminu lokaty (w latach) przy wyplatach kuponu raz do roku. Pięć krzywych odpowiada różnym wartościom stopy procentowej r=0.1,0.2,0.3,0.4,0.5]]
 +
Zobaczmy jak zachowuje się Duration przy różnych wartościach stopy procentowej w zależności od terminu lokaty.
 +
 
 +
<source lang="matlab">
 +
r=linspace(0.1,0.5,5)
 +
for j=1:length(r)
 +
  for i=1:20
 +
    d(i,j)=Duration(100,r(j),6,i);
 +
  endfor
 +
endfor
 +
plot(1:20,d)
 +
</source>

Aktualna wersja na dzień 14:44, 8 cze 2010


Obligacja ze stałym kuponem

Mamy obligację, której emitent zobowiązuje się do płacenia odsetek regularnie raz do roku i zamierza zwrócić zaciągnięte zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest wzorem

który możemy zaimplementować jako funkcję w matlabie:

function P0=Bond_Fair_Price(PN,r,C,n)
  P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
endfunction
Wykres zależności wartości obligacji od stopy procentowej
 r=linspace(0.01,0.5,25)
 for i=1:length(r)
  p(i)=Bond_Fair_Price(100,r(i),7,25); 
 endfor
 plot(r,p)

Proszę zwrócić uwagę na frangment:

   C./(1+r).^[1:(n-1)]

który tworzy wektor o elementach będących funkcją wskaźnika \frac{C}{(1+r)^i} dla i=1..(n-1).


Dysponując tą funkcją przykład ze skryptu Instrumenty Rynku można przeliczyć wywołując:

octave:157>P0=1
octave:157>PN=100
octave:157>r=0.07 
octave:157>C=6
octave:157>Bond_Fair_Price(PN,r,C,2)
ans =  98.192

W przypadku m wypłat kuponu w jednym roku mamy

function P0=Bond_Fair_Price_multi(PN,r,C,n,m)
  P0 = sum ( (C/m)./(1+r/m).^[1:n] ) + PN/(1+r/m)^n;
endfunction

a w przypadku kapitalizacji ciągłej mamy:

function P0=Bond_Fair_Price_cont(PN,r,C,t)
  P0 = sum ( (C)*exp(-r*t) ) + PN*exp(-r*t(length(x))
endfunction

Stopa zwrotu w terminie do wykupu (Yield to maturity)

Mamy równanie na wartość obligacji po n latach z m okresami wypłaty kupona:

\ P_o=\sum\limits_{i=1}^n\frac{C_i/m}{(1+r/m)^i} +\frac{P_N}{(1+r/m)^n}

i chcemy rozwiązać je na stopę r.

W tym celu przepiszmy do postaci:

P_0 (1+r/m)^n -\sum\limits_{i=1}^{n-1} \frac{C_{n-i}}{m}(1+r/m)^i + (-\frac{C_n}{m}-P_N) =0

Czyli mamy wielomian stopnia n-tego na (1+r/m) o współczynnikach:

\displaystyle a_n=P_0 a_i=-\frac{C_{n-i}}{m} dla i=2,3,...,n-1 a_0=-\frac{C_n}{m}-P_N

Analitycznie nie ma ogólnych wzorów na pierwiastki wielomianu dowolnego stopnia, ale instnieją procedury numeryczne, które bardzo dobrze wykonują to zadanie.

function r=YTM(P0,PN,m,n,C)
 
  a = [P0, -1/m*fliplr(C)(2:length(C)), -C(n)/m-PN ];
  myroots=roots(a);
  r= ( max( myroots(find( imag(myroots)==0 )) ) - 1)*m;
 
endfunction

Proszę zwrócić uwagę na dwie techniki:

  1. wektor współczynników wielomianu jest generowany stosując kod wektorowy a w tym między innymi funkcję fliplr odwracającą wektor (x(i)=x(-i))
  2. roots(a) wylicza pierwiastki wielomianu. Jest ich więcej niż potrzeba i część z nich jest zepspolona. Chodzi nam o największy pierwiastek rzeczywisty. W celu jego wybrania używamy funkcji find i max.

Dla przykładu policzmy stope 'r' dla pewnych zadanych wartości cen obligacji przy założeniu stałości kuponu (stąd C=5*ones(4)):

octave:211> r=YTM(100,186,1,4,5*ones(4))
r =  0.20831

Duration według Macaulay’a

Duration obligacji przy kapitalizacji dyskretnej jest średnią ważoną czasów transakcji z wagami proporcjonalnymi ich zdyskontowanej wielkości (PV). Mamy więc wzór na wartość obligacji (fair price):

P_0=\sum\limits_{i=1}^n\frac{C_i}{(1+r)^i} +\frac{P_N}{(1+r)^n}

D=(\sum\limits_{i=1}^n i\frac{C_i}{(1+r)^i} +n\frac{P_N}{(1+r)^n})/P_0


Wzór ten można zaimplementować w następujący sposób jako funkcję w matlab/GNU Octave:

function [Duration,P0]=Duration(PN,r,C,n)
 
  P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n;
  Duration = (sum ( C./(1+r).^[1:n].*[1:n] ) + n*PN/(1+r)^n )/P0;
 
endfunction

Dla przykładu zbadajmy kilka podstawowych własności Duration:

Wiemy, że dla obligacji bezkuponowych duration jest równe czasowi wykupu. I rzeczywiście:

Duration(100,0.1,0,7)
ans =  7
Wykres zależności Duration od terminu lokaty (w latach) przy wyplatach kuponu raz do roku. Pięć krzywych odpowiada różnym wartościom stopy procentowej r=0.1,0.2,0.3,0.4,0.5

Zobaczmy jak zachowuje się Duration przy różnych wartościach stopy procentowej w zależności od terminu lokaty.

r=linspace(0.1,0.5,5)
for j=1:length(r)
  for i=1:20 
    d(i,j)=Duration(100,r(j),6,i); 
  endfor
endfor
plot(1:20,d)