Z Skrypty dla studentów Ekonofizyki UPGOW
(→Estymacja parametrów modeli) |
(→Metoda Yule-Walkera) |
||
Linia 29: | Linia 29: | ||
====Metoda Yule-Walkera==== | ====Metoda Yule-Walkera==== | ||
+ | Niech <math> \{ X_t \} \ </math> będzie procesem AR(p) o średniej zerowej | ||
+ | : <math> X_t - \varphi_1 X_{t-1} - \dots - \varphi_p X_{t-p} = Z_t, ~~Z_t \sim BS(0, \sigma^2). </math> | ||
+ | Postaramy się teraz oszacować <math> \bar{\varphi} </math> oraz <math> \sigma^2 </math>. | ||
+ | |||
+ | Korzystając z założenia, że <math> \{ X_t \} \ </math> jest losowy <math> \big( X_t = \sum \Psi_j Z_{t-j} \ \big),</math> otrzymujemy równania Yole - Walkera | ||
+ | : <math> | ||
+ | \begin{align} | ||
+ | \Gamma_p \bar{\varphi} &= \gamma_p \\ | ||
+ | \sigma^2 &= \gamma(0) - \bar{\varphi}' \gamma_p | ||
+ | \end{align} | ||
+ | </math> | ||
+ | gdzie | ||
+ | : <math> \Gamma_p = [\gamma(i-j)]_{i,j=1}^p </math> - macierz kowariancji, | ||
+ | : <math> \gamma_p = (\gamma(1), \gamma(2), \dots, \gamma(p) )'. </math> | ||
+ | Z równań tych możemy łatwo oszacować <math> \gamma(0), \dots, \gamma(p) </math> znając <math> \sigma^2, \bar{\varphi} </math>. Z drugiej strony, jeżeli zamienimy występujące tutaj funkcje autokowariancji na odpowiednie funkcje autokowariancji ''próby'' otrzymamy '''estymatory Yule-Walkera''' | ||
+ | : <math> | ||
+ | \begin{align} | ||
+ | \hat{\Gamma}_p \hat{\varphi} &= \hat{\gamma}_p, \\ | ||
+ | \hat{\sigma}^2 &= \hat{\gamma}(0) - \hat{\varphi}' \hat{\gamma}_p, | ||
+ | \end{align} | ||
+ | </math> | ||
+ | gdzie odpowiednie | ||
+ | : <math> \hat{\Gamma}_p = [\hat{\gamma}(i-j)]_{i,j=1}^p </math> - macierz kowariancji próby, | ||
+ | : <math> \hat{\gamma}_p = (\hat{\gamma}(1), \hat{\gamma}(2), \dots, \hat{\gamma}(p) )' </math> - wektor kowariancji próby. | ||
+ | |||
+ | Jeżeli tylko <math> \hat{\gamma}(0) > 0 </math> to możemy podzielić obie strony przez <math> \hat{\gamma}(0) </math> i otrzymamy wtedy | ||
+ | |||
====Algorytm Durbina - Levinsona==== | ====Algorytm Durbina - Levinsona==== | ||
====Algorytm Burga==== | ====Algorytm Burga==== |
Wersja z 15:57, 29 gru 2010
Analiza Szeregów Czasowych <<< Modelowanie szeregów czasowych | Matlab / GNU Octave >>>
Spis treści |
Estymacja parametrów modeli
Szacowanie parametrów modeli rządzących szeregami czasowymi to niełatwe zagadnienie. Jest to również przedostatni krok w analizie szeregów czasowych. Ostatnim krokiem jest predykcja przyszłych wartości szeregu w oparciu o dane posiadane. ,
Aby oszacować jaki to model ARMA(p,q) stoi za analizowanym szeregiem czasowym musimy wykonać kilka kroków
- jakie p i q należy wybrać
- oszacować średnią oraz współczynniki AR \( \varphi_i \ \) oraz MA \( \theta_j \ \), i=1,...,p, j=1,...,q,
- oszacować wariancję szumu \(\sigma^2 \ \) dla wybranych parametrów,
- sprawdzić poprawność wybranego modelu (najlepiej dla różnych zestawów parametrów p i q).
Ostateczna decyzja, czy dany model dobrze reprezentuje dane zależy od kilku możliwych testów.
Zakładamy obecnie, że fitować będziemy model ARMA do danych których średnia wynosi 0
- \( \langle X_t \rangle = EX_t = 0. \)
Jeżeli \( \{ Y_t \} \) oznacza oryginalne dane, to \( X_t = Y_t - EY_t \).
Będziemy dopasowywać dane do modelu
- \( X_t - \varphi_1X_{t-1} - \dots - \varphi_p X_{t-p} = Z_t + \theta_1Z_{t-1} - \dots - \varphi_q Z_{t-q}, \{ Z_t \} = BS(0,\sigma^2) \ \)
Czyli dla wybranych przez na p i q celem będzie znalezienie wektorów \( \bar{\varphi} = (\varphi_1, \dots, \varphi_p) \) oraz \( \bar{\theta} = (\theta_1, \dots, \theta_q) \).
AR
W przypadku, gdy posiadane dane mogą być przybliżone poprzez model autoregresji rzędu p (tj: q = 0), dość dobrym estymatorem wektora \( \bar{\varphi} \) okazuje się być prosty algorytm porównujący autokowariancję próby oraz teoretyczną wyliczoną z modelu AR(p). Metoda ta nosi nazwę Yule-Walkera.
Metoda Yule-Walkera
Niech \( \{ X_t \} \ \) będzie procesem AR(p) o średniej zerowej
- \( X_t - \varphi_1 X_{t-1} - \dots - \varphi_p X_{t-p} = Z_t, ~~Z_t \sim BS(0, \sigma^2). \)
Postaramy się teraz oszacować \( \bar{\varphi} \) oraz \( \sigma^2 \).
Korzystając z założenia, że \( \{ X_t \} \ \) jest losowy \( \big( X_t = \sum \Psi_j Z_{t-j} \ \big),\) otrzymujemy równania Yole - Walkera
- \( \begin{align} \Gamma_p \bar{\varphi} &= \gamma_p \\ \sigma^2 &= \gamma(0) - \bar{\varphi}' \gamma_p \end{align} \)
gdzie
- \( \Gamma_p = [\gamma(i-j)]_{i,j=1}^p \) - macierz kowariancji,
- \( \gamma_p = (\gamma(1), \gamma(2), \dots, \gamma(p) )'. \)
Z równań tych możemy łatwo oszacować \( \gamma(0), \dots, \gamma(p) \) znając \( \sigma^2, \bar{\varphi} \). Z drugiej strony, jeżeli zamienimy występujące tutaj funkcje autokowariancji na odpowiednie funkcje autokowariancji próby otrzymamy estymatory Yule-Walkera
- \( \begin{align} \hat{\Gamma}_p \hat{\varphi} &= \hat{\gamma}_p, \\ \hat{\sigma}^2 &= \hat{\gamma}(0) - \hat{\varphi}' \hat{\gamma}_p, \end{align} \)
gdzie odpowiednie
- \( \hat{\Gamma}_p = [\hat{\gamma}(i-j)]_{i,j=1}^p \) - macierz kowariancji próby,
- \( \hat{\gamma}_p = (\hat{\gamma}(1), \hat{\gamma}(2), \dots, \hat{\gamma}(p) )' \) - wektor kowariancji próby.
Jeżeli tylko \( \hat{\gamma}(0) > 0 \) to możemy podzielić obie strony przez \( \hat{\gamma}(0) \) i otrzymamy wtedy
Algorytm Durbina - Levinsona
Algorytm Burga
MA
Dla przypadków, gdy q > 0 metoda zaprezentowana wcześniej nie do końca zdaje egzamin. W tym przypadku posługujemy się algorytmem innowacyjnym.