Liczby zespolone

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
Linia 11: Linia 11:
Gdy <math>\beta=0</math>, wtedy <math>z=\alpha</math> - liczba rzeczywista jest szczególnym przypadkiem liczby zespolonej, gdy <math>\alpha=0</math> wtedy <math>z= \beta i</math> - liczba urojona szczególny przypadek liczby zespolonej.
Gdy <math>\beta=0</math>, wtedy <math>z=\alpha</math> - liczba rzeczywista jest szczególnym przypadkiem liczby zespolonej, gdy <math>\alpha=0</math> wtedy <math>z= \beta i</math> - liczba urojona szczególny przypadek liczby zespolonej.
== Interpretacja geometryczna ==
== Interpretacja geometryczna ==
-
Liczby zespolone przedstawia się w postaci punktów na płaszczyźnie. Liczbę <math>z = \alpha + \beta i</math> przedstawia punkt o odciętej <math>\alpha</math> i rzędnej <math>\beta</math> rys 1.
+
Liczby zespolone przedstawia się w postaci punktów na płaszczyźnie. Liczbę <math>z = \alpha + \beta i</math> przedstawia punkt o odciętej <math>\alpha</math> i rzędnej <math>\beta</math> [[Media:complex1.png|Rys 1]].
-
[[File:complex1.png|thumb|Rys. 1 Interpretacja geometryczna liczby <math>z = \alpha + \beta i</math>]]
+
[[File:complex1.png|thumb|250px|Rys. 1 Interpretacja geometryczna liczby <math>z = \alpha + \beta i</math>]]
== Równość liczb zespolonych ==
== Równość liczb zespolonych ==
Linia 92: Linia 92:
:<math>\sqrt[n]{z^n} = z</math>
:<math>\sqrt[n]{z^n} = z</math>
Zobacz graficzną prezentacje [http://visual.icse.us.edu.pl/wizualizacje/algebra-i-analiza/zobacz/PierwiastkowanieLiczbZespolonych/ tutaj]
Zobacz graficzną prezentacje [http://visual.icse.us.edu.pl/wizualizacje/algebra-i-analiza/zobacz/PierwiastkowanieLiczbZespolonych/ tutaj]
 +
 +
=== Logarytm naturalny liczby zespolonej ===
 +
W oparciu o postać trygonometryczną liczby zespolonej <math>z=\rho (\cos(\phi) +i \sin(\phi))</math> możena zapiać
 +
:<math>\ln(z) = \left\{ \ln(r) + (\varphi + 2\pi k)i \;|\; k \in \mathbb{Z}\right\}</math>
 +
 +
== Funkcje trygonometryczne zmiennej zespolonej ==
 +
Funkcje trygonometryczne zmiennej zespolonej zachowują większość własności zmiennej rzeczywistej
 +
 +
* okresowość
 +
* tożsamości trygonometryczne,
 +
* miejsca zerowe,
 +
* punkty nieokreśloności
 +
** sinus i cosinus są określone w całym zbiorze liczb zespolonych,
 +
** tangens jest określony w zbiorze liczb zespolonych, których usunięto liczby postaci <math>\tfrac{(2k-1)\pi}{2}\;</math>, a cotangens – punktów postaci <math>k\pi\;</math>, gdzie <math>k\;</math> jest całkowita.
 +
 +
Dla jednostki urijonej  <math>i</math> zachodzi
 +
 +
:<math>\cos i = \tfrac{1}{2}(e^{-1}+e) \approx 1,543;\qquad</math>
 +
:<math>\sin i = \tfrac{1}{2i}(e^{-1}-e)\approx 1,175i</math>
 +
 +
{|class="wikitable" style="text-align: center;"
 +
|Funkcja|| Część rzeczywista|| Część urojona|| Moduł
 +
|-
 +
|<math>\sin(x\pm iy)</math>|| <math>\sin x \cosh y\;</math>|| <math>\pm \cos x\sinh y\;</math>|| <math>\sqrt{\sin^2 x+\sinh^2 y}</math>
 +
|-
 +
|<math>\cos(x\pm iy)</math>|| <math>\cos x \cosh y\;</math>|| <math>\mp \sin x\sinh y\;</math>|| <math>\sqrt{\cos^2 x+\sinh^2 y}</math>
 +
|-
 +
|<math>\operatorname{tg}(x\pm iy)</math>|| <math>\frac{\sin 2x}{\cos 2x+\cosh 2y}</math>|| <math>\pm\frac{\sinh 2y}{\cos 2x+\cosh 2y}</math>|| <math>\sqrt{\frac{\sin^2 2x+\sinh^2 2y}{(\cos 2x+\cosh 2y)^2}}</math>
 +
|-
 +
|<math>\operatorname{ctg}(x\pm iy)</math>|| <math>-\frac{\sin 2x}{\cos 2x-\cosh 2y}</math>|| <math>\pm\frac{\sinh 2y}{\cos 2x-\cosh 2y}</math>|| <math>\sqrt{-\frac{\cos 2x+\cosh 2y}{\cos 2x-\cosh 2y}}</math>
 +
|}
== Zadania ==
== Zadania ==
Linia 132: Linia 163:
##<math>-i</math>
##<math>-i</math>
##<math>-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i</math>
##<math>-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i</math>
-
#Opierając się na rys 2 narysuj liczby  
+
#Opierając się na rys 3 narysuj liczby  
-
#:[[File:complex3.png|thumb|Rys. 2 LIczby ''z, w, v'' w płaszczyźnie zespolonej]]
+
#:[[File:complex3.png|thumb|Rys. 3 LIczby ''z, w, v'' w płaszczyźnie zespolonej]]
##<math>z+\bar{z}</math>, <math>w+\bar{w}</math>, <math>v+\bar{v}</math>
##<math>z+\bar{z}</math>, <math>w+\bar{w}</math>, <math>v+\bar{v}</math>
##<math>2w + \bar{z} + v</math>
##<math>2w + \bar{z} + v</math>
##<math>v - z - w</math>
##<math>v - z - w</math>

Wersja z 16:28, 2 lut 2014

Liczba zespoloną jest liczbą, która może być wyrażona w postaci

\[z = \alpha + \beta i\]

gdzie \(\alpha\) i \(\beta\) są liczbami rzeczywistymi, zaś \(i\) jest jednostką urojoną, która spełnia równanie \(i^2 = -1\). Ponadto liczbę \(\alpha\) nazywamy częścią rzeczywistą i liczbę \(\beta\) częścią urojoną z liczny zespolonej.

\[\alpha = Re(z)\] \[\beta = Im(z)\]

Gdy \(\beta=0\), wtedy \(z=\alpha\) - liczba rzeczywista jest szczególnym przypadkiem liczby zespolonej, gdy \(\alpha=0\) wtedy \(z= \beta i\) - liczba urojona szczególny przypadek liczby zespolonej.

Spis treści

Interpretacja geometryczna

Liczby zespolone przedstawia się w postaci punktów na płaszczyźnie. Liczbę \(z = \alpha + \beta i\) przedstawia punkt o odciętej \(\alpha\) i rzędnej \(\beta\) Rys 1.

Rys. 1 Interpretacja geometryczna liczby \(z = \alpha + \beta i\)

Równość liczb zespolonych

Dwie liczby zespolone są równe wtedy i tylko wtedy, gdy zarówno ich rzeczywista i urojona są równe. Innymi słowy: \[z_{1} = z_{2} \, \, \leftrightarrow \, \, ( \operatorname{Re}(z_{1}) = \operatorname{Re}(z_{2}) \, \land \, \operatorname{Im} (z_{1}) = \operatorname{Im} (z_{2}))\]

Postać trygonometryczna liczby zespolonej

Wyrażenie \[z=\alpha +\beta i\] nazywamy postacią algebraiczną liczby zespolonej. Jeżeli zamiast współrzędnych kartezjańskich punktu reprezentującego liczbę zespoloną wprowadzimy współrzędne biegunowe to otrzymamy postać trygonometryczną zapisu liczby zespolonej: \[z=\rho (\cos(\phi) +i \sin(\phi))\] gdzie \(\rho\) to długość promienia wodzącego, nazywa się modułem lub bezwzględna wartością liczby zespolonej i oznacz się symbolem \(|z|\), natomiast \(\phi\) to kat między osia biegunową, a promieniem wodzącym i oznacza się symbolem \(\phi=arg z\) Można wyprowadzić następujące związki między współrzędnymi biegunowymi i kartezjańskimi: \[\alpha = \rho \cos(\phi)\] \[\beta = \rho \sin(\phi)\]

\[\rho = \sqrt{\alpha^2+\beta^2}\] \[\cos(\phi)=\frac{\alpha}{\sqrt{\alpha^2+\beta^2}}\] \[\sin(\phi)=\frac{\beta}{\sqrt{\alpha^2+\beta^2}}\]

Postać wykładnicza liczby zespolonej

W oparciu o formulę Euler'a \[e^{ix} = \cos(\phi) + i\sin(\phi) \ \] możemy liczbę zespolona przedstawić w tzw. postać wykładniczej: \[z=\rho e^{i\phi}\]

Liczby zespolone sprzężone

Dwie liczby zespolone nazywamy sprzężonymi jeżeli mają części rzeczywiste równe, a części urojone różnią się tylko znakiem. Liczby takie oznaczmy: \( z \text{ } \bar{z} \) \[ z= \alpha + \beta i = \rho(\cos(\phi)+i\sin(\phi) = \rho e^{i\phi}\] \[ \bar{z}= \alpha - \beta i = \rho(\cos(\phi)-i\sin(\phi) = \rho e^{-i\phi}\] Ponadto zachodzi: \[\operatorname{Re}\,(z) = \tfrac{1}{2}(z+\bar{z}), \,\] \[\operatorname{Im}\,(z) = \tfrac{1}{2i}(z-\bar{z}). \,\] A także: \[\overline{z+w} = \bar{z} + \bar{w}, \,\] \[\overline{z-w} = \bar{z} - \bar{w}, \,\] \[\overline{z w} = \bar{z} \bar{w}, \,\] \[\overline{(z/w)} = \bar{z}/\bar{w}. \,\] \[\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{\bar{z}}{x^2+y^2}.\]

Podstawowe działania

Dodawanie i odejmowanie

Liczby zespolone są dodawane/odejmowane przez dodanie/odjęcie rzeczywistych i urojonych części. \[(a+bi) + (c+di) = (a+c) + (b+d)i.\ \] \[(a+bi) - (c+di) = (a-c) + (b-d)i.\ \] Zobacz graficzną prezentacje dodawania tutaj

Mnożenie

Mnożenie dwóch liczb jest zdefiniowane za pomocą następującego wzoru: \[(a+bi) (c+di) = (ac-bd) + (bc+ad)i.\ \] Należy pamiętać, że: \[i^2 = i \times i = -1.\ \] Stąd wzór na mnożenie nie dwóch liczb zespolonych da się przedstawić w następujący sposób: \[(a+bi) (c+di) = ac + bci + adi + bidi \ \]

\[ = ac + bidi + bci + adi \ \]
\[ = ac + bdi^2 + (bc+ad)i \ \]
\[ = (ac-bd) + (bc + ad)i \ \]

Mnożenie w postaci trygonometrycznej

Opierając się na poniższych wzorach: \[ \cos(a)\cos(b) - \sin(a)\sin(b) = \cos(a + b)\] \[ \cos(a)\sin(b) + \cos(b)\sin(a) = \sin(a + b)\] Możenie dwóch liczb zespolonych z1 = r1(cos φ1 + i sin φ1) i z2 =r2(cos φ2 + i sin φ2) możemy zapisać w następujący sposób: \[z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)).\,\] Zobacz graficzną prezentacje tutaj

Dzielenie

Dzielenie liczb zespolonych jest oparte na ich mnożeniu opisanym wcześniej oraz mnożeniu liczb rzeczywistych. Należy jednak pamiętać, ze choć jedna z liczb występujących w mianowniku musi być różna od zera. \[\,\frac{a + bi}{c + di} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i. \]

Dzielenie w postaci trygonometrycznej

Dzielenie dwóch liczb zespolonych z1 = r1(cos φ1 + i sin φ1) i z2 =r2(cos φ2 + i sin φ2) możemy zapisać w następujący sposób: \[\frac{z_1}{ z_2} = \frac{r_1}{ r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)\right).\]

Potęgowanie

Podnoszenie liczby zespolonej do potęgi wykonuje się według wzoru de Moivre'a \[ z^n=[\rho(\cos(\phi)+i\sin(\phi))]^n=\rho^n(\cos(n\phi)+i\sin(n\phi))\] Zobacz graficzną prezentacje tutaj

Pierwiastkowanie

Wyciągnięcie pierwiastka z liczby zespolonej wykonuje się za pomocą następującego wzoru: \[\sqrt[n]{z} = \sqrt[n]\rho \left( \cos \left(\frac{\phi+2k\pi}{n}\right) + i \sin \left(\frac{\phi+2k\pi}{n}\right)\right)\] Ponadto zachodzi: \[\sqrt[n]{z^n} = z\] Zobacz graficzną prezentacje tutaj

Logarytm naturalny liczby zespolonej

W oparciu o postać trygonometryczną liczby zespolonej \(z=\rho (\cos(\phi) +i \sin(\phi))\) możena zapiać \[\ln(z) = \left\{ \ln(r) + (\varphi + 2\pi k)i \;|\; k \in \mathbb{Z}\right\}\]

Funkcje trygonometryczne zmiennej zespolonej

Funkcje trygonometryczne zmiennej zespolonej zachowują większość własności zmiennej rzeczywistej

  • okresowość
  • tożsamości trygonometryczne,
  • miejsca zerowe,
  • punkty nieokreśloności
    • sinus i cosinus są określone w całym zbiorze liczb zespolonych,
    • tangens jest określony w zbiorze liczb zespolonych, których usunięto liczby postaci \(\tfrac{(2k-1)\pi}{2}\;\), a cotangens – punktów postaci \(k\pi\;\), gdzie \(k\;\) jest całkowita.

Dla jednostki urijonej \(i\) zachodzi

\[\cos i = \tfrac{1}{2}(e^{-1}+e) \approx 1,543;\qquad\] \[\sin i = \tfrac{1}{2i}(e^{-1}-e)\approx 1,175i\]

Funkcja Część rzeczywista Część urojona Moduł
\(\sin(x\pm iy)\) \(\sin x \cosh y\;\) \(\pm \cos x\sinh y\;\) \(\sqrt{\sin^2 x+\sinh^2 y}\)
\(\cos(x\pm iy)\) \(\cos x \cosh y\;\) \(\mp \sin x\sinh y\;\) \(\sqrt{\cos^2 x+\sinh^2 y}\)
\(\operatorname{tg}(x\pm iy)\) \(\frac{\sin 2x}{\cos 2x+\cosh 2y}\) \(\pm\frac{\sinh 2y}{\cos 2x+\cosh 2y}\) \(\sqrt{\frac{\sin^2 2x+\sinh^2 2y}{(\cos 2x+\cosh 2y)^2}}\)
\(\operatorname{ctg}(x\pm iy)\) \(-\frac{\sin 2x}{\cos 2x-\cosh 2y}\) \(\pm\frac{\sinh 2y}{\cos 2x-\cosh 2y}\) \(\sqrt{-\frac{\cos 2x+\cosh 2y}{\cos 2x-\cosh 2y}}\)

Zadania

  1. Oblicz, a rozwiązanie napisz w postaci \(a + bi\)
    1. \((5 - 6i) + (3 + 2i)\)
    2. \((4 - 12 i) - (9 + 52i)\)
    3. \((2 + 5i)(4 - i)\)
    4. \((1 - 2i)(8 - 3i)\)
    5. \(i^3\)
    6. \(i^{100}\)
  2. Oblicz:
    1. \((7 + 2i) + (11 - 6i)\)
    2. \((8 - 3i) - (6i)\)
    3. \((9 + 4i)(3 - 16i)\)
    4. \(3i \times 9i\)
    5. \(\frac{i}{2+i}\)
    6. \(\frac{11 + 3i}{\sqrt{3} - 4i}\)
    7. \({(x + yi)}^{-1}\)
    8. \(\overline{12+7i}\)
    9. \(\overline{2i(\frac{1}{2}i-i)}\)
    10. \(\frac{1+4i}{3+2i}\)
  3. Dane są dwie liczby zespolone \( \begin{matrix} x &=& 3 - 2i \\ y &=& 3 + 2i \end{matrix} \)
    Oblicz
    1. x + y
    2. x - y
    3. x2
    4. y2
    5. xy
    6. (x + y)(x - y)
  4. Oblicz
    1. (3 + 3i)1/2
    2. (1 + 1i)1/2
    3. i1/3
  5. Znajdź dwie odrębne liczby zespolone \(z_1\) i \(z_2\) takie, że \(z_j^2=-1\) dla j=1 i j=2.
  6. Zapisz wynik działania \((\frac{\sqrt{3}}{2} + \frac{1}{2}i)( \frac{1}{2} +\frac{\sqrt{3}}{2}i)\) w postaci \(a + bi\)
  7. Znajdź odwrotność każdej z następujących liczb:
    1. \(-1-i\)
    2. \(3-2i\)
    3. \(i\)
    4. \(-i\)
    5. \(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\)
  8. Opierając się na rys 3 narysuj liczby
    Rys. 3 LIczby z, w, v w płaszczyźnie zespolonej
    1. \(z+\bar{z}\), \(w+\bar{w}\), \(v+\bar{v}\)
    2. \(2w + \bar{z} + v\)
    3. \(v - z - w\)