Piwo

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
(Utworzył nową stronę „Niech stężenie <math>CO_2</math> w piwie będzie spełniało równanie: <math>\frac{dc(t)}{dt}=-k c(t)</math> z warunkiem początkowym <math>c(0)=c_0</math> rozwią…”)
Linia 14: Linia 14:
Objętość piany:
Objętość piany:
-
<math>V(t)=V_0*C(t)</math>
+
<math>V(t)=V_0 C(t)</math>
rózniczkując mamy:
rózniczkując mamy:
-
<math>\frac{dV(t)}{dt}=V_0*C(t)=-V_0*k*c_0*exp(-k t)</math>
+
<math>\frac{dV(t)}{dt}=V_0 C(t)=-V_0 k c_0 exp(-k t)</math>
zo daje nam równanie na przyrost piany zwiazany z dopływem <math>CO_2</math>.
zo daje nam równanie na przyrost piany zwiazany z dopływem <math>CO_2</math>.
Gaz ulatnia się z prędkością zależną tylko  od powierzchni <math>\beta</math>:
Gaz ulatnia się z prędkością zależną tylko  od powierzchni <math>\beta</math>:
-
<math>\frac{dV(t)}{dt}=V_0*k*c_0*exp(-k t)-\beta</math>
+
<math>\frac{dV(t)}{dt}=V_0 k c_0 exp(-k t)-\beta</math>
Rozwiązaniem tego równania z warunkiem <math>V(0)=0</math> jest:
Rozwiązaniem tego równania z warunkiem <math>V(0)=0</math> jest:
<math>V(t)=V_0*c_0*exp(k t)- \beta t</math>
<math>V(t)=V_0*c_0*exp(k t)- \beta t</math>

Wersja z 07:17, 8 sty 2010

Niech stężenie \(CO_2\) w piwie będzie spełniało równanie:

\(\frac{dc(t)}{dt}=-k c(t)\)

z warunkiem początkowym \(c(0)=c_0\) rozwiązaniem tego równaniwa jest:

\(c(t)=c_0 exp(-k t)\).

Objętość \(CO_2\), który już się wydzielił wynosi:


\(C(t)=c_0-c_0 exp(-k t)\).

Objętość piany:

\(V(t)=V_0 C(t)\) rózniczkując mamy:


\(\frac{dV(t)}{dt}=V_0 C(t)=-V_0 k c_0 exp(-k t)\)

zo daje nam równanie na przyrost piany zwiazany z dopływem \(CO_2\). Gaz ulatnia się z prędkością zależną tylko od powierzchni \(\beta\):

\(\frac{dV(t)}{dt}=V_0 k c_0 exp(-k t)-\beta\)

Rozwiązaniem tego równania z warunkiem \(V(0)=0\) jest:

\(V(t)=V_0*c_0*exp(k t)- \beta t\)