Z Skrypty dla studentów Ekonofizyki UPGOW
m (→Obligacja ze stałym kuponem) |
m |
||
(Nie pokazano 9 wersji pomiędzy niniejszymi.) | |||
Linia 1: | Linia 1: | ||
+ | [[Category:MKZR]] | ||
+ | ===Wstęp=== | ||
+ | W tym rozdziale przedstawione zostaną implementacje klasycznych wzorów stosowanych przy wycenie wybranych instrumentów rynkowych. Uzasadnienie teoretyczne, szersza analiza i interpretacje znajdują się w skrypcie [[Instrumenty_Rynku]]. | ||
- | |||
===Obligacja ze stałym kuponem=== | ===Obligacja ze stałym kuponem=== | ||
Mamy obligację, której emitent zobowiązuje się do płacenia odsetek regularnie raz do roku i zamierza zwrócić zaciągnięte zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|wzorem]] | Mamy obligację, której emitent zobowiązuje się do płacenia odsetek regularnie raz do roku i zamierza zwrócić zaciągnięte zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|wzorem]] | ||
Linia 24: | Linia 26: | ||
</source> | </source> | ||
- | Proszę zwrócić uwagę na fragment: | + | ''Uwaga: Proszę zwrócić uwagę na fragment:'' |
<source lang="matlab"> | <source lang="matlab"> | ||
C./(1+r).^[1:(n-1)] | C./(1+r).^[1:(n-1)] | ||
</source> | </source> | ||
- | który tworzy wektor o elementach będących funkcją wskaźnika | + | ''który tworzy wektor o elementach będących funkcją wskaźnika'' |
+ | |||
<math>\frac{C}{(1+r)^i} </math> dla <math>i=1..(n-1)</math>. | <math>\frac{C}{(1+r)^i} </math> dla <math>i=1..(n-1)</math>. | ||
+ | ''Działanie można sobie przećwiczyć na prostym przykładzie:'' | ||
+ | <source lang="matlab"> | ||
+ | octave:271> idx=[1:4] | ||
+ | idx = | ||
+ | |||
+ | 1 2 3 4 | ||
+ | |||
+ | octave:272> idx.^2 | ||
+ | ans = | ||
+ | |||
+ | 1 4 9 16 | ||
+ | </source> | ||
- | + | Przeliczmy teraz [[IRF:Analiza_i_wycena_instrument%C3%B3w#Cena_godziwa_.28fair_price.29|przykład]] ze skryptu Instrumenty Rynku : | |
<source lang="matlab"> | <source lang="matlab"> | ||
Linia 44: | Linia 59: | ||
</source> | </source> | ||
- | + | Analogicznie możemy zaimplementować naszą funkcje dla przypadków: [[IRF:Analiza_i_wycena_instrument%C3%B3w#Obligacja__zerokuponowa|m wypłat kuponu]] w jednym roku: | |
<source lang="matlab"> | <source lang="matlab"> | ||
function P0=Bond_Fair_Price_multi(PN,r,C,n,m) | function P0=Bond_Fair_Price_multi(PN,r,C,n,m) | ||
Linia 51: | Linia 66: | ||
</source> | </source> | ||
- | + | oraz dla [[IRF:Analiza_i_wycena_instrument%C3%B3w#Wycena_przy_kapitalizacji_ci.C4.85g.C5.82ej|kapitalizacji ciągłej]] gdzie mamy: | |
<source lang="matlab"> | <source lang="matlab"> | ||
function P0=Bond_Fair_Price_cont(PN,r,C,t) | function P0=Bond_Fair_Price_cont(PN,r,C,t) | ||
- | + | ti=1:floor(t); | |
+ | P0 = sum (C*exp(-r*ti)) + (t-floor(t))*C*exp(-r*t) + PN*exp(-r*t); | ||
endfunction | endfunction | ||
</source> | </source> | ||
+ | [[Plik:fair_price_cont_discr.png|thumb|360px|Wykres zależności wartości obligacji od stopy procentowej: porównanie modeli z kapitalizacjami: ciągłą i dyskretną.]] | ||
===Stopa zwrotu w terminie do wykupu (Yield to maturity)=== | ===Stopa zwrotu w terminie do wykupu (Yield to maturity)=== |
Aktualna wersja na dzień 15:09, 23 sty 2011
Spis treści[ukryj] |
Wstęp
W tym rozdziale przedstawione zostaną implementacje klasycznych wzorów stosowanych przy wycenie wybranych instrumentów rynkowych. Uzasadnienie teoretyczne, szersza analiza i interpretacje znajdują się w skrypcie Instrumenty_Rynku.
Obligacja ze stałym kuponem
Mamy obligację, której emitent zobowiązuje się do płacenia odsetek regularnie raz do roku i zamierza zwrócić zaciągnięte zobowiązanie (wartość nominalną) w chwili wykupu, na koniec życia zobowiązania. Wartość takie obligacji dane jest wzorem
który możemy zaimplementować jako funkcję w matlabie:
function P0=Bond_Fair_Price(PN,r,C,n) P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n; endfunction
Dysponując taką funkcją możemy narysować wykres zależności ceny obligacji od stopy procentowej r:
r=linspace(0.01,0.5,25) for i=1:length(r) p(i)=Bond_Fair_Price(100,r(i),7,25); endfor plot(r,p)
Uwaga: Proszę zwrócić uwagę na fragment:
C./(1+r).^[1:(n-1)]
który tworzy wektor o elementach będących funkcją wskaźnika
\frac{C}{(1+r)^i} dla i=1..(n-1).
Działanie można sobie przećwiczyć na prostym przykładzie:
octave:271> idx=[1:4] idx = 1 2 3 4 octave:272> idx.^2 ans = 1 4 9 16
Przeliczmy teraz przykład ze skryptu Instrumenty Rynku :
octave:157>P0=1 octave:157>PN=100 octave:157>r=0.07 octave:157>C=6 octave:157>Bond_Fair_Price(PN,r,C,2) ans = 98.192
Analogicznie możemy zaimplementować naszą funkcje dla przypadków: m wypłat kuponu w jednym roku:
function P0=Bond_Fair_Price_multi(PN,r,C,n,m) P0 = sum ( (C/m)./(1+r/m).^[1:n] ) + PN/(1+r/m)^n; endfunction
oraz dla kapitalizacji ciągłej gdzie mamy:
function P0=Bond_Fair_Price_cont(PN,r,C,t) ti=1:floor(t); P0 = sum (C*exp(-r*ti)) + (t-floor(t))*C*exp(-r*t) + PN*exp(-r*t); endfunction
Stopa zwrotu w terminie do wykupu (Yield to maturity)
Mamy równanie na wartość obligacji po n latach z m okresami wypłaty kupona:
\ P_o=\sum\limits_{i=1}^n\frac{C_i/m}{(1+r/m)^i} +\frac{P_N}{(1+r/m)^n}
i chcemy rozwiązać je na stopę r.
W tym celu przepiszmy do postaci:
P_0 (1+r/m)^n -\sum\limits_{i=1}^{n-1} \frac{C_{n-i}}{m}(1+r/m)^i + (-\frac{C_n}{m}-P_N) =0
Czyli mamy wielomian stopnia n-tego na (1+r/m) o współczynnikach:
\displaystyle a_n=P_0 a_i=-\frac{C_{n-i}}{m} dla i=2,3,...,n-1 a_0=-\frac{C_n}{m}-P_N
Analitycznie nie ma ogólnych wzorów na pierwiastki wielomianu dowolnego stopnia, ale instnieją procedury numeryczne, które bardzo dobrze wykonują to zadanie.
function r=YTM(P0,PN,m,n,C) a = [P0, -1/m*fliplr(C)(2:length(C)), -C(n)/m-PN ]; myroots=roots(a); r= ( max( myroots(find( imag(myroots)==0 )) ) - 1)*m; endfunction
Proszę zwrócić uwagę na dwie techniki:
- wektor współczynników wielomianu jest generowany stosując kod wektorowy a w tym między innymi funkcję fliplr odwracającą wektor (x(i)=x(-i))
- roots(a) wylicza pierwiastki wielomianu. Jest ich więcej niż potrzeba i część z nich jest zepspolona. Chodzi nam o największy pierwiastek rzeczywisty. W celu jego wybrania używamy funkcji find i max.
Dla przykładu policzmy stope 'r' dla pewnych zadanych wartości cen obligacji przy założeniu stałości kuponu (stąd C=5*ones(4)):
octave:211> r=YTM(100,186,1,4,5*ones(4)) r = 0.20831
Duration według Macaulay’a
Duration obligacji przy kapitalizacji dyskretnej jest średnią ważoną czasów transakcji z wagami proporcjonalnymi ich zdyskontowanej wielkości (PV). Mamy więc wzór na wartość obligacji (fair price):
P_0=\sum\limits_{i=1}^n\frac{C_i}{(1+r)^i} +\frac{P_N}{(1+r)^n}
D=(\sum\limits_{i=1}^n i\frac{C_i}{(1+r)^i} +n\frac{P_N}{(1+r)^n})/P_0
Wzór ten można zaimplementować w następujący sposób jako funkcję w matlab/GNU Octave:
function [Duration,P0]=Duration(PN,r,C,n) P0 = sum ( C./(1+r).^[1:n] ) + PN/(1+r)^n; Duration = (sum ( C./(1+r).^[1:n].*[1:n] ) + n*PN/(1+r)^n )/P0; endfunction
Dla przykładu zbadajmy kilka podstawowych własności Duration:
Wiemy, że dla obligacji bezkuponowych duration jest równe czasowi wykupu. I rzeczywiście:
Duration(100,0.1,0,7) ans = 7
Zobaczmy jak zachowuje się Duration przy różnych wartościach stopy procentowej w zależności od terminu lokaty.
r=linspace(0.1,0.5,5) for j=1:length(r) for i=1:20 d(i,j)=Duration(100,r(j),6,i); endfor endfor plot(1:20,d)