Analiza Szeregów Czasowych/Wstęp

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
(Ćwiczenie W1.3: Populacja Polski w latach 1960 - 2010.)
(Ćwiczenie W1.3: Populacja Polski w latach 1960 - 2010.)
Linia 226: Linia 226:
''Eurostat’s mission is to provide the European Union with a high-quality statistical information service.''
''Eurostat’s mission is to provide the European Union with a high-quality statistical information service.''
-
Strona Eurostat-u może posłużyć Państwu jako doskonałe źródło ciekawych danych statystycznych. Ze strony Eurostat-u proszę pobrać interesujące nas dane, tj. wygenerować plik *.csv zawierający dane dotyczące stanu liczebnego Polski z w latach 1960 - 2010. Z pliku zawierającego dużo więcej danych proszę wyodrębnić te właściwe i wyplotować do pliku.
+
# Strona Eurostat-u może posłużyć Państwu jako doskonałe źródło ciekawych danych statystycznych. Ze strony Eurostat-u proszę pobrać interesujące nas dane, tj. wygenerować plik *.csv zawierający dane dotyczące stanu liczebnego Polski z w latach 1960 - 2010. Z pliku zawierającego dużo więcej danych proszę wyodrębnić te właściwe i wyplotować do pliku.
-
* dla ambitnych: proszę w sieci poszukać jak najdalej wstecz sięgających danych statystycznych odnośnie ludności Polski i powtórzyć procedurę z tymi danymi.
+
# Proszę w internecie poszukać jak najdalej wstecz sięgających danych statystycznych odnośnie ludności Polski i powtórzyć procedurę z tymi danymi (da się znaleźć dane od roku około 1000).
====Źródło danych====
====Źródło danych====

Wersja z 15:06, 11 lut 2010

Analiza Szeregów Czasowych

Spis treści


Definicja szeregu czasowego

Możemy spotkać różne definicje szeregu czasowego.

Szereg czasowy to

  • ciąg obserwacji pokazujący kształtowanie się badanego zjawiska w kolejnych okresach czasu (sekundach, dniach, latach, itp.).
  • realizacja procesu stochastycznego, którego dziedziną jest czas; to ciąg informacji uporządkowanych w czasie, których pomiary wykonywane są z dokładnym krokiem czasowym.
  • ciąg obserwacji xt zapisywanych w ściśle określonym czasie.

Wśród składników szeregu czasowego możemy wyróżnić:

  • trend (tendencję rozwojową),
  • wahania sezonowe,
  • wahania cykliczne (koniunkturalne),
  • wahania przypadkowe.

W jakim celu badamy szeregi czasowe?

Analiza tego typu zagadnień ma generalnie dwa podstawowe cele:

  1. odgadnięcie natury danego zjawiska losowego, tj. badanie własności szeregu i znalezienie modelu najlepiej opisującego zjawisko,
  2. prognozowanie (predykcja), tj. przewidywanie kolejnych wartości szeregu czasowego na podstawie znalezionego modelu.

Przykłady szeregów czasowych

Przykład 1. Prąd płynący przez opornik.

Rysunek 1. 100 kolejnych punktów czasowych dla szeregu czasowego z przykładu 1 dla dwóch wartości oporu r.

Jeżeli do opornika charakteryzującego się oporem \(r\) przyłożymy zmienne napięcie

\( U(t) = a \cos (\omega t), \! \)

gdzie \(a\) to amplituda zmiennego napięcia przyłożonego do opornika, a okres zmienności to \(T = 2 \pi / \omega\). Wtedy natężenie prądu elektrycznego płynącego przez opornik można wyrazić wzorem

\( I(t) = \frac{a \cos (\omega t)}{r}. \! \)

Jest to oczywiście ciągła funkcja czasu, jednak, kiedy będziemy rejestrować wartości natężenia \(I(t)\) w kolejnych chwilach czasu (np. co \(0.1 T\), 1 milisekundę czy 1 godzinę), dostaniemy dyskretny szereg czasowy \(I_i\) indeksowany kolejnymi pomiarami \( i = 0, 1, 2, \dots \). Przykładowe szeregi czasowe opisane powyższym wzorem można znaleźć na rysunku 1.

Ćwiczenie W1.1
Wygeneruj w programie Matlab/Octave rysunek 1 (legenda jest opcjonalna).
  1. Zbierz do tablic indeksy \(i\) oraz wartości natężenia prądu w punktach \(t_i = i \cdot ( 6 \pi / 100 ), i \in [0,100]\).
  2. Wyplotuj do pliku (np: rysW11.png) wykres \(I_i = a \cos(\omega t_i + \phi) / r \).
Rozwiązanie w języku Matlab / Octave Rozwiązanie w języku python z bibliotekami numpy oraz matplotlib
close all
 
h = figure;
set (h,'papertype', 'a4')
set (h,'paperunits','centimeters');
set (h,'papersize',[8 6])
set (h,'paperposition', [0,0,[8 6]])
set (h,'defaultaxesposition', [0.15, 0.15, 0.75, 0.75])
set (0,'defaultaxesfontsize', 24)
 
x = -pi:7*pi/100:6*pi;
i = 0:1:100;
 
y = sin(x)/0.8;
plot (i,y ,"+^; r = 0.9 {/Symbol o}, {/Symbol f} = 0;")
 
hold on
 
y = sin(x + pi/3)/1.5;
plot(i,y,"-or; r = 1.5{/Symbol O}, {/Symbol f}= {/Symbol p}/3;");
 
xlabel('i');
ylabel('I_i');
title('I_i = a cos (\omega t_i + \phi) /r,  a = 1V, \omega = 1Hz'); 
 
grid on
 
print('example01m.eps','-deps','-FTimes-Roman:24');
print('example01m.svg','-dsvg');
print('example01m.png','-dpng');
%system('convert -density 100 example01m.eps example01m.png')
import matplotlib.pyplot as plt
import numpy as np
 
plt.figure(1, figsize=(8,6), dpi=600)
i = np.arange(100)
x = np.arange(-np.pi, 6.0*np.pi, 7.0*np.pi/100)
 
kolor  = ['b','r']
lines  = ['v','-p']
lw = 1
 
j=0
a, o, r, phi   = 1, 1, 0.8, 0
labels = r'$r = %.1f\Omega, \quad \phi = %.1f$' % (r,phi)
y = a * cos(o*x + phi) / r
plt.plot(i, y, lines[j], color=kolor[j], label=labels, linewidth=lw)
 
j=1
a, o, r, phi   = 1, 1, 1.5, np.pi/3.
labels = r'$r = %.1f\Omega, \quad \phi = \pi/3$' % (r)
y = a * cos(o*x + phi) / r
plt.plot(i, y, lines[j], color=kolor[j], label=labels, linewidth=lw)
 
plt.xlabel(r'$i$')
plt.ylabel(r'$I_i$')
plt.grid(True)
 
leg = plt.legend(shadow=True,
    fancybox=True,
    mode='expand',
    ncol=2,
    loc=(0.025,0.96),
    handletextpad=0.1, 
    title=r'$I_t = a \cos (\omega t + \phi) / r \qquad a = 1V, \quad\omega = 1 Hz$')
plt.savefig('example01.png')

Przykład 2. Proces dwustanowy (proces dychotomiczny, binarny, zerojedynkowy).

Rysunek 2. 100 kolejnych punktów czasowych dla rzutu monetą (przykład 2). Dane użyte do wygenerowania wykresu: 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1.

Niech \(\{X_t, t = 1,2,3,\dots\}\) będzie uporządkowanym zbiorem niezależnych zmiennych losowych (sekwencją losową), dla których prawdopodobieństwo

\( P (X_t = 0) = P (X_t = 1) = 1/2. \)

(dowód istnienia potrzebnej przestrzeni probabilistycznej na razie sobie darujemy). Seria pomiarowa składać się będzie z losowo ułożonych w czasie zer i jedynek {0,0,0,1,0,1,1,1,1,0,...}. Przykładem jest rzut monetą.


Ćwiczenie W1.2
Każda osoba ma za zadanie wykonać N (w zależności od liczebności grupy, w sumie około 100 na wszystkich studentów) rzutów monetą. W arkuszu kalkulacyjnym na [docs.google.com] wpisujemy wartości:
  • 0 jeżeli wyrzuciliśmy Orła
  • 1 jeżeli wyrzuciliśmy Reszkę

każdy w oddzielnej kolumnie. Stwórz prosty wykres danych w arkuszu kalkulacyjnym Google. Następnie za pomocą programu Matlab/Octave stwórz rysunek przedstawiający tak utworzony szereg czasowy. Szereg ma uwzględniać pomiary wszystkich.

  • wyeksportuj dane z arkusza Google do pliku CSV
  • zaimportuj dane do tabeli w Matlab'ie
  • Wyplotuj do pliku (np: rysW12.png) wykres \(X_t\).
Rozwiązanie w języku Matlab / Octave Rozwiązanie w języku python z bibliotekami numpy oraz matplotlib
close all
 
h = figure;
set (h,'papertype', 'a4')
set (h,'paperunits','centimeters');
set (h,'papersize',[8 6])
set (h,'paperposition', [0,0,[8 6]])
set (h,'defaultaxesposition', [0.15, 0.15, 0.75, 0.75])
set (0,'defaultaxesfontsize', 24)
 
N = 100;
i = 0:N;
 
%
% eksperyment studentów (symulcja rzutu monetą)
% odkomentowac jezeli nie mamy danych
%
%y = int32(rand(N+1,1));
%csvwrite('dataW12.csv',y);
%
 
y = csvread('dataW12.csv');
plot (i,y ,"-^; Orzeł czy Reszka?;")
axis([0,N,-0.5,1.5]);
xlabel('t');
ylabel('X_t');
grid on
 
print('example02m.eps','-deps','-FTimes-Roman:24')
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
from random import randint
 
plt.figure(1, figsize=(8,6), dpi=600)
i = np.array([s for s in np.arange(100)])
y = np.array([randint(0,1) for s in np.arange(100)])
 
plt.plot(i, y, 'v', color='b', label=u"Orzeł czy Reszka?", linewidth=1)
plt.axis([0, len(y), -0.5, 1.5])
plt.xlabel(r'$t$')
plt.ylabel(r'$X_t$')
plt.grid(True)
 
leg = plt.legend(shadow=True
    ,fancybox=True
    ,ncol=1
    ,loc=(0.025,0.96)
    )
plt.savefig('example02.png')

Przykład 3. Populacja Polski.

Rysunek 3. Zmienność populacji Polski w latach 1960 - 2010 (przykład 3). Dane: http://epp.eurostat.ec.europa.eu

Przykład zmiany liczby ludności Polski.

Rozwiązanie w języku Matlab / Octave Rozwiązanie w języku python z bibliotekami numpy oraz matplotlib
PierwszyRok = 1960;
OstatniRok  = 2010;
%N = OstatniRok - PierwszyRok;
%i = 0:N;
% lub
i = PierwszyRok:OstatniRok;
y = csvread('PopulacjaPolski1960-2010.csv');
 
plot(i,y(:,5:5)/1000.,'--r; Populacja Polski w latach 1960-2010;',
                'marker','^', 'MarkerSize',14, 'markeredgecolor','black')
 
xlabel('t');
ylabel('X_t (w tysiącach)');
grid on;
legend('Location','SouthEast');
TBA

Ćwiczenie W1.3: Populacja Polski w latach 1960 - 2010.

Eurostat’s mission is to provide the European Union with a high-quality statistical information service.

  1. Strona Eurostat-u może posłużyć Państwu jako doskonałe źródło ciekawych danych statystycznych. Ze strony Eurostat-u proszę pobrać interesujące nas dane, tj. wygenerować plik *.csv zawierający dane dotyczące stanu liczebnego Polski z w latach 1960 - 2010. Z pliku zawierającego dużo więcej danych proszę wyodrębnić te właściwe i wyplotować do pliku.
  1. Proszę w internecie poszukać jak najdalej wstecz sięgających danych statystycznych odnośnie ludności Polski i powtórzyć procedurę z tymi danymi (da się znaleźć dane od roku około 1000).

Źródło danych

http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database

Przykład 4. Liczba wypadków samochodowych

Przykład 5. Giełda 1

Przykład 6. Giełda 2

Przykład 7. Giełda 3