Z Skrypty dla studentów Ekonofizyki UPGOW
(→Stochastyczne równania różniczkowe) |
(→Rachunek różniczkowy Ito) |
||
Linia 222: | Linia 222: | ||
+ | Wstawimy teraz wyrażenie na <math>dX </math> z równania Ito | ||
+ | <xr id="eqn:10.51-equation"> (%i</xr>) | ||
+ | <math>dg(X, t) = g'(X, t)\left[F(X, t) dt + G(X, t) dW\right] + \dot g(X, t) dt </math>: | ||
+ | |||
+ | <math> | ||
+ | + \frac{1}{2} g''(X, t) \left[F(X, t) dt + G(X, t) dW\right] \left[F(X, t) dt + G(X, t) dW\right] | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | + \dot g \,'(X, t) dt \left[F(X, t) dt + G(X, t) dW\right] + | ||
+ | \frac{1}{2} \ddot g(X, t) dt dt + \dots </math> | ||
===Równania Ito i procesy dyfuzji=== | ===Równania Ito i procesy dyfuzji=== |
Wersja z 14:44, 30 mar 2010
Spis treści |
Stochastyczne równania różniczkowe
Pamiętamy, że proces Wienera otrzymaliśmy jako graniczny proces błądzenia przypadkowego cząstki poruszającej się ruchem jednowymiarowym. Uogólnienie na przypadek dwóch lub trzech wymiarów nie stanowi problemu. Proces Wienera \(W(t)\) opisuje w tym przypadku położenie cząstki. Pochodna procesu Wienera jest białym szumem gaussowskim \(\Gamma(t)\). Jeżeli oznaczymy położenie cząski przez \(X(t)\), to możemy napisać następującą relację
\[\frac{dX(t)}{dt} =\Gamma(t)\]
gdzie lewa strona jest prędkością cząstki Browna. Możemy spojrzeć na tę relację jak na stochastyczne równanie różniczkowe z losowym wyrazem \(\Gamma(t)\), który jest białym szumem gaussowskim. Biały szum gaussowski można zastąpić innymi procesami losowymi. Możemy tego typu równanie uogólniać do różnych postaci. Dla przykładu
gdzie funkcje \(F(x, t)\) oraz \(G(x, t)\) są funkcjami deterministycznymi (nielosowymi).
Okazuje się, że interpretacja takich równań stochastycznych z białymi szumami (poissonowskim, gaussowskim lub najogólniej Levy'ego) nie jest jednoznaczna w odróżnieniu od równań różniczkowych deterministycznych, to znaczy takich, które nie zawierają żadnych wielkości losowych. Gdzie tkwi przyczyna niejednoznaczności? Mozna odpowiedzieć, że źródłem tych niejednoznaczności jest własność procesu Wienera, Poissona lub w ogólności Levy'ego. Pamiętamy, że są to procesy o niezależnych przyrostach na nieprzekrywających się przedziałach. To jest istota zagadnienia.
Fizycy nazywają Równanie (1) równaniem Langevina. Matematycy nie lubią takiej postaci tego równania. Dlaczego? Ponieważ, jak pamiętamy, biały szum gaussowski nie jest "poprawnie" zdefiniowany. Nawet w sensie średnikwadratowym! Matematycy preferują inną postać równania (1) którą można otrzymać w następujący sposób: ponieważ
więc pomnożymy obustronnie równanie (1) przez \(dt\) i otrzymamy
Ta postać równania nazywa się równaniem Ito. W tym równaniu wszystkie wielkości są poprawnie zdefiniowane. Wielkość \(dW(t)\) jest różniczką czyli przyrostem procesu Wienera:
Wiemy, że
Stąd, w sensie średniokwadratowym
Przy takim spojrzeniu, w równaniu (3), pierwszy wyraz po prawej stronie jest rzędu \(dt\), natomiast drugi wyraz jest rzędu \(\sqrt{dt}\).
Możemy powyższe równanie Ito uogolnić na wielowymiarowy przypadek dla wektora procesów stochastycznych
\[\vec{X}(t)= \{X_1(t), X_2(t), \dots, X_n(t)\}\]
Otrzymujemy układ równań Ito w postaci
gdzie funkcje \(F_i({\vec X}, t)\) oraz \(G_{ij}({\vec X}, t)\) są funkcjami deterministycznymi (nielosowymi) oraz
\[\vec{W}(t)= \{W_1(t), W_2(t), \dots, W_n(t)\}\]
są niezależnymi procesami Wienera o statystyce
gdzie \(\delta_{ij}\) jest deltą Kroneckera (patrz Dodatek matematyczny).
Całki stochastyczne Ito i Stratonowicza
Równanie (3) ciągle jest "niedodefiniowane". Co to znaczy? Aby wyjaśnić to, przedstawimy je w jeszcze innej postaci. Scałkujmy obustronnie to równanie ze względu na czas w granicach od \(t_0\) do \(t\):
Otrzymujemy równanie całkowe na proces stochastyczny \(X(t)\). W równaniu tym pojawiają sie dwa typy całek: "tradycyjna" całka Riemanna-Stieltjesa
oraz całka, w której występuje proces Wienera
Powinniśmy zawsze pamiętać o tym, że całka jest graniczną wartością odpowiedniej sumy. I tak pierwsza całka
gdzie granicę należy rozumieć w sensie średniokwadratowym oraz \({\tilde s}_i \in [s_i, s_{i+1}]\) jest dowolną wartością z danego przedziału \([s_i, s_{i+1}]\). W kursie analizy matematycznej wykazuje się, że graniczna wartość sumy (czyli wartość całki) nie zależy od tego gdzie leżą punkty \({\tilde s}_i\) w przedziale \([s_i, s_{i+1}]\). Mogą one leżeć w lewym końcu przedziału, w prawym końcu przedziału, w środku lub każdym innym punkcie tego przedziału. Okazuje się, że tej własności nie ma drugi typ całki!! W takim razie w jakim punkcie przedziału należy wybrać wartość \({\tilde s}_i\) w całce, w której pojawia sie proces Wienera? Najlepiej jest wybrać z lewej strony przedziału z czysto praktycznej przyczyny (ułatwia to rachunki). Aby wyjaśnic dlaczego, rozpatrzmy nieco inną całkę z procesem Wienera, a mianowicie
Tak określona całka nazywa się całką Ito i ma "przyjazne" własności z tego powodu, że wartości średnie typu
\( \langle H(W(s_i), {\tilde s}_i) [W(s_{i+1}) -W(s_i)]^k\rangle = \langle H(W(s_i), {\tilde s}_i)\rangle \cdot \langle [W(s_{i+1}) -W(s_i)]^k\rangle\)
rozbijają się na iloczyny wartości średnich ponieważ proces Wienera jest procesem o niezależnych przyrostach na nieprzekrywających sie przedziałach (porównaj obliczenie funkcji korelacyjnej procesu Wienera), a wartość średnia iloczynu niezależnych zmiennych losowych jest równa iloczynowi wartości średnich tych zmiennych. Jest to główna przyczyna takiej definicji całek Ito. Należy podkreślić, że dla rzeczywistych procesów losowych taki wybór nie zawsze jest poprawny. O tym powiemy później.
Teraz możemy zdefiniować całkę (11):
Całki, w definicji których wartości procesu \(X(t)\) lub \(W(t)\) należy brać z lewej strony przedziałów \([s_i, s_{i+1}]\), nazywamy całkami Ito lub całkami w interpretacji Ito. Ponieważ jak na razie z czysto matematycznego punktu widzenia wybór punktu z lewej strony przedziału jest arbitralny, każdy inny punkt jest równo uprawniony. Ale należy bezwględnie pamiętać, że zmiana położenia punktu \({\tilde s}_i\) w przedziale \([s_i, s_{i+1}] \) oznacza zmianę wartości całki. To odróżnia całki stochastyczne od "tradycyjnych" całek Riemanna.
Istnieją także inne definicje całek stochastycznych. Druga, konkurencyjna definicja jest następująca:
\(I_{\circ}= \int_{t_0}^t G(X(s), s) \circ \,dW(s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} G\left(\frac{X(s_{i+1}) + X(s_i)}{2}, {\tilde s}_i\right) [W(s_{i+1}) -W(s_i)]\)
gdzie oznak \(\circ\) w całce ma informować o tym, że wartość funkcji \(G(X(t), t)\) na przedziale \([s_i, s_{i+1}] \) jest brana dla średniej arytmetycznej \([X(s_{i+1}) + X(s_i)]/2\). Tak określona całka nazywa się całką Stratonowicza lub całka w sensie Stratonowicza.
Czytelnik łatwo zauważy, że obie całki są szczególnymi przypadkami takiej oto całki:
\[ = \lim_{n \to \infty} \sum_{i=0}^{n-1} G\left(\lambda X(s_{i+1}) + (1-\lambda) X(s_i), {\tilde s}_i\right) [W(s_{i+1}) -W(s_i)]\]
gdzie \(\lambda \in [0, 1]\). Jeżeli \(\lambda =0\), otrzymujemy definicję Ito. Dla \(\lambda =1/2\) otrzymujemy definicję Stratonowicza.
Rachunek różniczkowy Ito
W Dodatku matematycznym przedstawiliśmy rozwinięcie funkcji jednej zmiennej \(f(x)\) i funkcji dwóch zmiennych \(F(x, y) \) w szereg Taylora. Rozpatrzmy teraz funkcję dwóch zmiennych \(g(x, t)\), która jest różniczkowalna dostateczną ilość razy. W szczególności zakładamy, że istnieją pochodne
\(g'(x, t)= g' =\partial g(x, t)/\partial x, \; \; \dot g(x, t) = \dot g = \partial g(x, t)/\partial t, \; \; g''(x, t) = g'' =\partial^2 g/\partial x^2, \; \;\)
Przyjmiemy taką konwencję, że różniczkowanie względem pierwszego argumentu oznaczymy apostrofem ' ; różniczkowanie względem drugiego argumentu oznaczymy kropką \(\cdot \).
Rozpatrzmy teraz funkcję \(g(X, t)\), gdzie teraz pierwszym argumentem jest proces stochastyczny \(X(t)\) okreslony przez równanie stochastyczne Ito:
gdzie \(dW(t)\) jest różniczką procesu Wienera:
Wiemy, że
Stąd, w sensie średniokwadratowym
Obliczmy różniczkę funkcji \(g(X, t)\):
\(dg(X, t) = \frac{\partial g}{\partial X} dX + \frac{\partial g}{\partial t} dt + \frac{1}{2} \frac{\partial^2 g}{\partial X^2} dX dX + \frac{\partial^2 g}{\partial X \partial dt} dX dt + \frac{1}{2} \frac{\partial^2 g}{\partial t^2} dt dt + \dots \)
Wstawimy teraz wyrażenie na \(dX \) z równania Ito (17)
\(dg(X, t) = g'(X, t)\left[F(X, t) dt + G(X, t) dW\right] + \dot g(X, t) dt \):
\( + \frac{1}{2} g''(X, t) \left[F(X, t) dt + G(X, t) dW\right] \left[F(X, t) dt + G(X, t) dW\right] \)
\( + \dot g \,'(X, t) dt \left[F(X, t) dt + G(X, t) dW\right] + \frac{1}{2} \ddot g(X, t) dt dt + \dots \)