Elementy teorii prawdopodobieństa

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
(Zmienna losowa)
(Zmienna losowa)
Linia 1: Linia 1:
-
 
==Teoria prawdopodobieństwa==
==Teoria prawdopodobieństwa==

Wersja z 18:25, 26 paź 2009

Spis treści

Teoria prawdopodobieństwa

Procesy i zjawiska losowe (przypadkowe, stochastyczne) opisywane są przez teorię prawdopodobieństwa. W odróżnieniu od procesów deterministycznych, nie można jednoznacznie przewidywać ewolucji układu losowego. Losowość opisujemy za pomocą prawdopodobieństwa zajścia określonych zdarzeń.

Przestrzeń probabilistyczna

podroździał

Teoria prawdopodobieństwa bazuje, jak każda teoria matematyczna, na odpowiedniej przestrzeni.

Dla przykładu, dla teorii funkcji taka przestrzenią jest przestrzeń metryczna. Przestrzeń metryczna jest takim zbiorem \( X \), w którym można zdefiniować odległość \( d(x, y) \) między dwoma jej elementami \( x \in X \) i \( y \in X \). Odleglość jest funkcją dwóch zmiennych \( x \) i \( y \) oraz posiada kilka charakterystycznych cech, np. odległość nie może byc ujemna. Jeżeli zdefiniujemy odległość w zbiorze \( X \), wówczas możemy w tym zbiorze określić zbieżność ciągów i wprowadzić pojęcie ciągłości funkcji. Możemy też zdefiniować pojęcie pochodnej funkcji i całki oznaczonej. Możemy dokonywać wielu innych operacji na funkcjach. Widać z tego przykładu, że pojęcie metryki jest bardzo użyteczne i zdefiniowanie metryki w jakimś zbiorze niesłychanie wzbogaca ten zbiór. Matematycy lubią definiować przestrzeń metryczna jako parę \( (X, d)\), tzn. jest to zbiór X wraz z określoną w niej odległościa, czyli metryką \( d=d(x, y)\).

Podobnie jest w teorii prawdopodobieństwa. Przestrzenią, którą bada teoria prawdopodobieństwa, jest zbiór, w którym określone są dodatkowe elementy, analogiczne do metryki. Przestrzeń ta nazywa się przestrzenią probabilistyczną. Dokładniej mówiąc przestrzeń ta nie jest parą jak w przypadku przestrzeni metrycznej, ale trójką \( (\Omega, {\mathcal F}, P)\). Rozszyfrujmy poszczególne elementy tej trójki.

(I) \(\Omega\) jest zbiorem elementów \(\omega\). Element \(\omega\) nazywa się zdarzeniem elementarnym lub inaczej mówiąc możliwym wynikiem doświadczenia. Przykłady:

1. Doświadczenie polega na jednokrotnym rzucie monetą. Są dwa możliwe wyniki: orzeł lub reszka. Wynikowi "orzeł" możemy przyporządkować oznaczenie \(\omega_1\), natomiast wynikowi "reszka" - \(\omega_2\). Tak więc zbiór \(\Omega =\{\omega_1, \omega_2\}\).

2. Doświadczenie polega na dwukrotnym rzucie monetą. Teraz możliwe są cztery wyniki: \(\omega_1 =\)(orzeł, orzeł), (orzeł, reszka), (reszka, orzeł) i (reszka, reszka). Jeden wynik to p: orzeł lub reszka. Wynikowi "orzeł" możemy przyporządkować oznaczenie \(\omega_1\), natomiast wynikowi "reszka" - \(\omega_2\). Tak więc zbiór \(\Omega =\{\omega_1,\omega_2,\omega_3, \omega_4\}\).

3. Doświadczenie polega na jednokrotnym rzucie kostką do gry w popularnego "chińczyka". Wynikiem może być jedno oczko, albo dwa oczka, albo trzy oczka, albo cztery oczka, albo pięć oczek, albo sześć oczek. Przyporządkowując liczbie oczek oznaczenie \(\omega_n \) dla \( n=1, 2, 3, 4, 5, 6 \) otrzymamy zbiór \(\Omega =\{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6 \}\).

Zmienna losowa

Przestrzeń probabilistyczna jest zbiorem, więc tak jak na każdym zbiorze możemy definiować odwzorowania. Niech \displaystyle f: X\mapsto Y będzie dowolną funkcją określoną na zbiorze \displaystyle X o wartościach w zbiorze \displaystyle Y.

Wiele zmiennych losowych-Wektor zmiennych losowych

Próby Bernouliego

Twierdzenie Poissona i rozklad Poissona