Analiza Szeregów Czasowych/Modelowanie szeregów czasowych

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
Linia 1: Linia 1:
[[Analiza Szeregów Czasowych]]
[[Analiza Szeregów Czasowych]]
-
==AR==
+
__TOC__
 +
 
 +
==Stacjonarne procesy ARMA==
 +
Niektóre szeregi czasowe <math> \{ X_t \} </math> możemy przedstawić w formie układu równac różnicowych ze stałymi współczynnikami. Takie równania definiują rodzinę procesów parametrycznych zwanych Modelami Autoregresyjnymi ze Średnią Kroczącą (''Autoregresive Moving Average Models'') lub krótko ARMA.
 +
 
 +
Dla każdej funkcji autokwariancji <math> \gamma (\cdot) </math> takiej, że
 +
: <math> \lim_{h \ to \infty} \gamma (h) = 0 \ </math>
 +
oraz dla dowolnej stałej ''k > 0'' jesteśmy w stanie znaleźć model ARMA z funkcją autokowariancji <math> \gamma_X (\cdot) </math> taką, że
 +
: <math> \gamma_X (h) = \gamma(h), ~~~h = 0, 1, \dots, k. \ </math>
 +
 
 +
Tak określona klasa modeli to prawdopodobnie najważniejsza rodzina procesów spotykana w modelowaniu szeregów czasowych. Dodatkowa liniowość procesów ARMA pozwala na łatwą (bo liniową) predykcję zmian szeregu czasowego.
 +
 
 +
==="Szum biały"===
 +
Matematycznie rzecz biorąc [[PIZL:Proces Wienera i proces dyfuzji#Biały szum gaussowski|Gaussowski szum biały]] zdefiniowany jest jako pochodna [[PIZL:Proces_Wienera_i_proces_dyfuzji#Proces_Wienera|procesu Wienera]]. [[PIZL:Procesy_Poissona#Poissonowski ciąg impulsów: biały szum Poissona|Poissonowski biały szum]] zdefiniowany jest jako pochodna [[PIZL:Procesy Poissona|procesu Poisona]]. Na potrzeby tego kursu wystarczy nam nieco mniej ścisła i dużo prostsza definicja.
 +
 +
; Definicja (szum biały) : Proces <math> \{ Z_t \} </math> nazywamy białym szumem ze średnią zero i wariancją <math> \sigma^2 </math> i oznaczamy jako
 +
: <math> \{ Z_t \} = BS (0,\sigma^2) [ = WN(0,\sigma^2) ] \ </math>
 +
wtedy i tylko wtedy gdy <math> \{ Z_t \} </math> posiada średnią zero i funkcję kowariancji
 +
:<math> \gamma(h) = \left \{ {{\sigma^2, h = 0} \atop {0, h \ne 0}} \right. </math>
 +
lub odpowiednio
 +
:<math> \rho(h) = \left \{ {{1, h = 0} \atop {0, h \ne 0}} \right. </math>
 +
 
 +
Jeżeli zmienne losowe <math> Z_t </math> mają takie same, niezależne od siebie rozkłady ze średnią zero i wariancją <math> \sigma^2 </math> to wtedy oznaczamy je
 +
: <math> Z_t = IID (0, \sigma^2). </math>
 +
 
 +
Dość szeroka klasa procesów stochastycznych może być modelowana z użyciem białego szumu jako losowej siły napędzającej w układzie równań (liniowych równań różnicowych).
 +
 
 +
===ARMA===
 +
; Definicja : Proces <math> \{ X_t, t = 0,\pm 1,\pm 2, \dots, \} </math> nazywamy procesem ARMA(p,q) jeżeli jest on stacjonarny oraz jeżeli dla każdego ''t''
 +
 
 +
: <math> X_t = c + Z_t +  \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i z\Z_{t-i}.\,</math>
 +
 
 +
gdzie
 +
 
 +
: <math> Z_t = BS (0, \sigma^2). </math>
 +
 
==MA==
==MA==
==ARMA==
==ARMA==

Wersja z 12:48, 24 gru 2010

Analiza Szeregów Czasowych

Spis treści


Stacjonarne procesy ARMA

Niektóre szeregi czasowe \( \{ X_t \} \) możemy przedstawić w formie układu równac różnicowych ze stałymi współczynnikami. Takie równania definiują rodzinę procesów parametrycznych zwanych Modelami Autoregresyjnymi ze Średnią Kroczącą (Autoregresive Moving Average Models) lub krótko ARMA.

Dla każdej funkcji autokwariancji \( \gamma (\cdot) \) takiej, że

\( \lim_{h \ to \infty} \gamma (h) = 0 \ \)

oraz dla dowolnej stałej k > 0 jesteśmy w stanie znaleźć model ARMA z funkcją autokowariancji \( \gamma_X (\cdot) \) taką, że

\( \gamma_X (h) = \gamma(h), ~~~h = 0, 1, \dots, k. \ \)

Tak określona klasa modeli to prawdopodobnie najważniejsza rodzina procesów spotykana w modelowaniu szeregów czasowych. Dodatkowa liniowość procesów ARMA pozwala na łatwą (bo liniową) predykcję zmian szeregu czasowego.

"Szum biały"

Matematycznie rzecz biorąc Gaussowski szum biały zdefiniowany jest jako pochodna procesu Wienera. Poissonowski biały szum zdefiniowany jest jako pochodna procesu Poisona. Na potrzeby tego kursu wystarczy nam nieco mniej ścisła i dużo prostsza definicja.

Definicja (szum biały) 
Proces \( \{ Z_t \} \) nazywamy białym szumem ze średnią zero i wariancją \( \sigma^2 \) i oznaczamy jako
\( \{ Z_t \} = BS (0,\sigma^2) [ = WN(0,\sigma^2) ] \ \)

wtedy i tylko wtedy gdy \( \{ Z_t \} \) posiada średnią zero i funkcję kowariancji \[ \gamma(h) = \left \{ {{\sigma^2, h = 0} \atop {0, h \ne 0}} \right. \] lub odpowiednio \[ \rho(h) = \left \{ {{1, h = 0} \atop {0, h \ne 0}} \right. \]

Jeżeli zmienne losowe \( Z_t \) mają takie same, niezależne od siebie rozkłady ze średnią zero i wariancją \( \sigma^2 \) to wtedy oznaczamy je

\( Z_t = IID (0, \sigma^2). \)

Dość szeroka klasa procesów stochastycznych może być modelowana z użyciem białego szumu jako losowej siły napędzającej w układzie równań (liniowych równań różnicowych).

ARMA

Definicja 
Proces \( \{ X_t, t = 0,\pm 1,\pm 2, \dots, \} \) nazywamy procesem ARMA(p,q) jeżeli jest on stacjonarny oraz jeżeli dla każdego t
\( X_t = c + Z_t + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i z\Z_{t-i}.\,\)

gdzie

\( Z_t = BS (0, \sigma^2). \)

MA

ARMA

ARIMA

SARIMA

...