Z Skrypty dla studentów Ekonofizyki UPGOW
(→Przykłady szeregów czasowych) |
(→Przykłady szeregów czasowych) |
||
Linia 32: | Linia 32: | ||
;Ćwiczenie W1.1: Wygeneruj w programie Matlab/Octave rysunek 1 (legenda jest opcjonalna). | ;Ćwiczenie W1.1: Wygeneruj w programie Matlab/Octave rysunek 1 (legenda jest opcjonalna). | ||
# Zbierz do tablic indeksy <math>i</math> oraz wartości natężenia prądu w punktach <math>t_i = i \cdot ( 6 \pi / 100 ), i \in [0,100]</math>. | # Zbierz do tablic indeksy <math>i</math> oraz wartości natężenia prądu w punktach <math>t_i = i \cdot ( 6 \pi / 100 ), i \in [0,100]</math>. | ||
- | # Wyplotuj do pliku (np: | + | # Wyplotuj do pliku (np: rysW11.png) wykres <math>I_i = a \cos(\omega t_i + \phi) / r </math>. |
;Przykład 2: Proces dwustanowy (proces binarny, zerojedynkowy). | ;Przykład 2: Proces dwustanowy (proces binarny, zerojedynkowy). | ||
Linia 40: | Linia 40: | ||
Przykładem jest rzut monetą. | Przykładem jest rzut monetą. | ||
- | ;Ćwiczenie W1.2: Każda osoba | + | ;Ćwiczenie W1.2: Każda osoba ma za zadanie wykonać N (w zależności od liczebności grupy, w sumie około 100 na wszystkich studentów) rzutów monetą. W arkuszu kalkulacyjnym na [[https://spreadsheets.google.com/ccc?key=0Ah95jpawYXXzdGFiT2xQTmFCUmJRalViS1NKeU1RbGc&hl=en docs.google.com]] wpisujemy wartości: |
* 0 jeżeli wyrzuciliśmy Orła | * 0 jeżeli wyrzuciliśmy Orła | ||
* 1 jeżeli wyrzuciliśmy Reszkę | * 1 jeżeli wyrzuciliśmy Reszkę | ||
- | każdy w | + | każdy w oddzielnej kolumnie. Stwórz prosty wykres danych w arkuszu kalkulacyjnym Google. |
+ | Następnie za pomocą programu Matlab/Octave stwórz rysunek przedstawiający tak utworzony szereg czasowy. Szereg ma uwzględniać pomiary ''wszystkich''. | ||
+ | * wyeksportuj dane z arkusza Google do pliku CSV | ||
+ | * zaimportuj dane do tabeli w Matlab'ie | ||
+ | * Wyplotuj do pliku (np: rysW12.png) wykres <math>X_t</math>. | ||
;Przykład 3: Populacja Polski | ;Przykład 3: Populacja Polski |
Wersja z 19:38, 8 lut 2010
Definicja szeregu czasowego
Możemy spotkać różne definicje szeregu czasowego.
Szereg czasowy to
- ciąg obserwacji pokazujący kształtowanie się badanego zjawiska w kolejnych okresach czasu (sekundach, dniach, latach, itp.).
- realizacja procesu stochastycznego, którego dziedziną jest czas; to ciąg informacji uporządkowanych w czasie, których pomiary wykonywane są z dokładnym krokiem czasowym.
- ciąg obserwacji xt zapisywanych w ściśle określonym czasie.
Wśród składników szeregu czasowego możemy wyróżnić:
- trend (tendencję rozwojową),
- wahania sezonowe,
- wahania cykliczne (koniunkturalne),
- wahania przypadkowe.
W jakim celu badamy szeregi czasowe?
Analiza tego typu zagadnień ma generalnie dwa podstawowe cele:
- odgadnięcie natury danego zjawiska losowego, tj. badanie własności szeregu i znalezienie modelu najlepiej opisującego zjawisko,
- prognozowanie (predykcja), tj. przewidywanie kolejnych wartości szeregu czasowego na podstawie znalezionego modelu.
Przykłady szeregów czasowych
- Przykład 1
- Prąd płynący przez opornik.
Jeżeli do opornika charakteryzującego się oporem \(r\) przyłożymy zmienne napięcie
- \( U(t) = a \cos (\omega t), \! \)
gdzie \(a\) to amplituda zmiennego napięcia przyłożonego do opornika, a okres zmienności to \(T = 2 \pi / \omega\). Wtedy natężenie prądu elektrycznego płynącego przez opornik można wyrazić wzorem
- \( I(t) = \frac{a \cos (\omega t)}{r}. \! \)
Jest to oczywiście ciągła funkcja czasu, jednak, kiedy będziemy rejestrować wartości natężenia \(I(t)\) w kolejnych chwilach czasu (np. co \(0.1 T\), 1 milisekundę czy 1 godzinę), dostaniemy dyskretny szereg czasowy \(I_i\) indeksowany kolejnymi pomiarami \( i = 0, 1, 2, \dots \). Przykładowe szeregi czasowe opisane powyższym wzorem można znaleźć na rysunku 1.
- Ćwiczenie W1.1
- Wygeneruj w programie Matlab/Octave rysunek 1 (legenda jest opcjonalna).
- Zbierz do tablic indeksy \(i\) oraz wartości natężenia prądu w punktach \(t_i = i \cdot ( 6 \pi / 100 ), i \in [0,100]\).
- Wyplotuj do pliku (np: rysW11.png) wykres \(I_i = a \cos(\omega t_i + \phi) / r \).
- Przykład 2
- Proces dwustanowy (proces binarny, zerojedynkowy).
Niech \(\{X_t, t = 1,2,3,\dots\}\) będzie uporządkowanym zbiorem niezależnych zmiennych losowych (sekwencją losową), dla których prawdopodobieństwo
- \( P (X_t = 0) = P (X_t = 1) = 1/2. \)
(dowód istnienia potrzebnej przestrzeni probabilistycznej na razie sobie darujemy). Seria pomiarowa składać się będzie z losowo ułożonych w czasie zer i jedynek {0,0,0,1,0,1,1,1,1,0,...}. Przykładem jest rzut monetą.
- Ćwiczenie W1.2
- Każda osoba ma za zadanie wykonać N (w zależności od liczebności grupy, w sumie około 100 na wszystkich studentów) rzutów monetą. W arkuszu kalkulacyjnym na [docs.google.com] wpisujemy wartości:
- 0 jeżeli wyrzuciliśmy Orła
- 1 jeżeli wyrzuciliśmy Reszkę
każdy w oddzielnej kolumnie. Stwórz prosty wykres danych w arkuszu kalkulacyjnym Google. Następnie za pomocą programu Matlab/Octave stwórz rysunek przedstawiający tak utworzony szereg czasowy. Szereg ma uwzględniać pomiary wszystkich.
- wyeksportuj dane z arkusza Google do pliku CSV
- zaimportuj dane do tabeli w Matlab'ie
- Wyplotuj do pliku (np: rysW12.png) wykres \(X_t\).
- Przykład 3
- Populacja Polski
- Przykład 4
- Liczba wypadków samochodowych
- Przykład 5
- Giełda 1
- Przykład 6
- Giełda 2
- Przykład 7
- Giełda 3