PIZL:Zbiory

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
Luczka (dyskusja | edycje)
(Utworzył nową stronę „== Zbiory== '''PODSTAWOWE POJĘCIA NA TEMAT ZBIORÓW''' Często będziemy posługiwali się pojęciem zbiorów i będziemy dokonywać różnych operacji na zbiorach. …”)
następna edycja →

Wersja z 07:57, 16 mar 2010

Zbiory

PODSTAWOWE POJĘCIA NA TEMAT ZBIORÓW

Często będziemy posługiwali się pojęciem zbiorów i będziemy dokonywać różnych operacji na zbiorach. Dlatego też przypomnimy podstawowe pojęcia i wprowadzimy oznaczenia, które będziemy stosować w dalszej części książki.

Oznaczmy przez \(\Omega\) zbiór, który nazwiemy przestrzenią. Niech \(A, B, ...\) będa podzbiorami zbioru \(\Omega\).

Sumą zbiorów nazywamy zbiór złożony ze wszystkich elementów należących do któregokolwiek z sumowanych zbiorów. Suma zbiorów \(A \) i \( B \) jest oznaczana przez \(A\cup B\). Tak więc:

\(A\cup B=\{x:x\in A\vee x\in B\}\)

Zapis ten odczytujemy następująco: jest to zbiór tych elementów x które należą do zbioru \(A\) lub należą do zbioru \(B\).

Iloczyn (lub część wspólna, przekrój, przecięcie) zbiorów \( A \) i \( B \) to zbiór, do którego należą te elementy zbioru \( A \), które należą również do \( B \). Część wspólna zbiorów \( A \) i \( B \) jest oznaczana przez \(A\cap B\). Tak więc:

\(A\cap B=\{x:x\in A\wedge x\in B\}\).

Zapis ten odczytujemy następująco: jest to zbiór tych elementów x które należą do zbioru \(A\) i jednocześnie należą do zbioru \(B\).


Różnica zbiorów A\B - to zbiór złożony z tych elementów zbioru A, które nie należą do B:

\(A \setminus B = \{ x : x\in A \and x \notin B\}\).

Zapis ten odczytujemy następująco: jest to zbiór tych elementów x które należą do zbioru \(A\) lecz nie należą do zbioru \(B\).


Dopełnieniem \(A'\) zbioru \(A\) (w przestrzeni \(\Omega\)) nazywa się różnica zbiorów

\(A'=\Omega \setminus A = \{x \in \Omega\colon x \notin A\}\),

Zapis ten odczytujemy następująco: jest to zbiór tych elementów x z przestrzeni \(\Omega\), które nie należą do zbioru \(A\).


Zbiór pusty jest to taki "dziwny" zbiór, który nie zawiera żadnych elementów. Oznaczany jest symbolem \(\empty\) lub \(\varnothing\).

Zbiory rozłączne – dwa zbiory \(A\) i \(B \) są rozłączne jeżeli ich część wspólna jest zbiorem pustym:

\(A\cap B=\empty\).

Inaczej mówiąc, zbiory te nie mają wspólnych elementów.

Na przykład, zbiory {1 ,2, 5, 8, 9} i {4, 6} są rozłączne, natomiast zbiory {2, 3, 5, 7, 8} i {2, 5, 6} – nie.

Rodzinę zbiorów| \((A_i)_{i\in I}\) nazywa się rodziną zbiorów parami rozłącznych, jeśli każde dwa różne zbiory tej rodziny są rozłączne: \[i\ne j \implies A_i\cap A_j = \emptyset\]