Z Skrypty dla studentów Ekonofizyki UPGOW
(→Uogólnienia klasycznej teorii portfela) |
(→Uogólnienia klasycznej teorii portfela) |
||
Linia 65: | Linia 65: | ||
Z kolei postać funkcji użyteczności<ref>W zasadzie w każdej teorii portfela istniej jakaś funkcja użyteczności, nawet gdy nie jest explicite wymieniona.</ref> ma liczbowo reprezentować nastawienie inwestora do ryzyka, oczekiwanej stopy zwrotu, użyteczności pieniądza itp. Zauważmy, że jeśli skupimy się na bogactwie, z pewnością możemy założyć że inwestor woli mieć więcej niż mniej, co wyrażone w postaci funkcji użyteczności oznacza, że powinna ona być rosnąca. Jednak w przypadku dużego bogactwa jego wzrost o 1% ma już niewielkie znaczenie na poziom życia inwestora i dominować mogą inne czynniki (np bezpieczeństwo inwestycji) i tak zwana krańcowa użyteczność może już nawet maleć. W takich podejściach definiuje (przyjmuje) się pewną funkcję użyteczności a tworzenie portfela sprowadza się do optymalizacji oczekiwanej użyteczności. | Z kolei postać funkcji użyteczności<ref>W zasadzie w każdej teorii portfela istniej jakaś funkcja użyteczności, nawet gdy nie jest explicite wymieniona.</ref> ma liczbowo reprezentować nastawienie inwestora do ryzyka, oczekiwanej stopy zwrotu, użyteczności pieniądza itp. Zauważmy, że jeśli skupimy się na bogactwie, z pewnością możemy założyć że inwestor woli mieć więcej niż mniej, co wyrażone w postaci funkcji użyteczności oznacza, że powinna ona być rosnąca. Jednak w przypadku dużego bogactwa jego wzrost o 1% ma już niewielkie znaczenie na poziom życia inwestora i dominować mogą inne czynniki (np bezpieczeństwo inwestycji) i tak zwana krańcowa użyteczność może już nawet maleć. W takich podejściach definiuje (przyjmuje) się pewną funkcję użyteczności a tworzenie portfela sprowadza się do optymalizacji oczekiwanej użyteczności. | ||
W modelach stochastycznej dominacji porównuje się dystrybuanty stóp zwrotu. Minimalizujemy, przy pewnych dodatkowych warunkach w zależności od preferencji inwestora, prawdopodobieństwo uzyskania stóp zwrotu co najmniej równych niż dana było największe. | W modelach stochastycznej dominacji porównuje się dystrybuanty stóp zwrotu. Minimalizujemy, przy pewnych dodatkowych warunkach w zależności od preferencji inwestora, prawdopodobieństwo uzyskania stóp zwrotu co najmniej równych niż dana było największe. | ||
- | W portfele specjalistyczne są na ogół konstruowane o inne zasady. Najbardziej znane są portfele arbitrażowe, które zwykle wykorzystują oprogramowanie do automatycznego poszukiwania zysku arbitrażowego. Niektóre instytucje finansowe oferują strategii budowane w oparciu o sztuczną inteligencję wykorzystujące proces automatycznego uczenia się (np. sieci neuronowe). Ostatnio powstaje mnóstwo różnego rodzaju specjalistycznych funduszy inwestycyjnych ograniczających swoją działalność do konkretnego rynku czy jego sektora. Konstruowane w taki sposób mogą portfele mieć krańcowo odmienne relacje między ryzykiem a użytecznością. Wymienimy tu tylko fundusze typu BRIC inwestujące na rynkach '''B'''razyli, '''R'''osji '''I'''ndii i '''C'''hin | + | W portfele specjalistyczne są na ogół konstruowane o inne zasady. Najbardziej znane są portfele arbitrażowe, które zwykle wykorzystują oprogramowanie do automatycznego poszukiwania zysku arbitrażowego. Niektóre instytucje finansowe oferują strategii budowane w oparciu o sztuczną inteligencję wykorzystujące proces automatycznego uczenia się (np. sieci neuronowe). Ostatnio powstaje mnóstwo różnego rodzaju specjalistycznych funduszy inwestycyjnych ograniczających swoją działalność do konkretnego rynku czy jego sektora. Konstruowane w taki sposób mogą portfele mieć krańcowo odmienne relacje między ryzykiem a użytecznością. Wymienimy tu tylko fundusze typu BRIC inwestujące na rynkach '''B'''razyli, '''R'''osji '''I'''ndii i '''C'''hin. |
= Modele rynku finansowego= | = Modele rynku finansowego= |
Wersja z 11:58, 12 maj 2010
Spis treści |
Analiza portfela
Zwykle, myśląc o inwestycji mamy do dyspozycji pewien kapitał własny lub pożyczony. W tej części ograniczymy się do inwestycji na rynkach kapitałowych. Przyjmiemy też upraszczające założenie, że pieniądze są inwestowane w chwili początkowej i interesuje nas wartość naszego portfela w pewnej chwili końcowej
Zarządzanie portfelem instrumentów finansowych
Przypomnijmy, że pomijając podatki i koszty transakcji, zysk (zwrot) \(R_z\) i stopę zwrotu \(r_z\) z inwestycji możemy zdefiniować następująco:
- Wniosek (dywersyfikacja)
Załóżmy, że wszystkie składniki portfela mają taką samą oczekiwaną stopę zwrotu a i jej wariancję s. Wtedy dla \(w_i=1/n,\ i=1,...n\) mamy
Oznacza to, że rozkładając inwestycję na n równorzędnych składników możemy zmiejszyć oczekiwane ryzyko z inwestycji (mierzone wariancją portfela).
Jeśli pójdziemy dalej tym tropem i będziemy używać wariancji jako "miary ryzyka", często nazywanej volatility w tym kontekście, to możemy "uprościć" nasz problem i analizować tylko zależność oczekiwanej stopy zwrotu z portfela od parametru ryzyka (czyli wariancji).
Model Markowitza
H. Markowitz zaproponował następujące podejście do teorii portfela
minimalizuj
pod warunkiem, że
i
Jak pamiętamy z kursu analizy matematycznej, problem taki można na ogół rozwiązać korzystając z metody czynników Lagrange'a. W tym celu definiujemy lagrangian:
Szukamy minimum
Prowadzi to do układu n+2 równań liniowych z n+2 niewiadomymi, który na ogół ma rozwiązanie:
- Przykład (lemat o dwóch funduszach)
Model Markowitza ma wiele interesujących właściwości. Omówimy tu jedną z nich, która wynika z formy opisujących go równań. Załóżmy, że znamy rozwiązania dla dwóch różnych wartości \(\overline{r}\), powiedzmy \(\overline{r^1}\) i \(\overline{r^2}\). Łatwo zauważyć
W modelu Markowitza definiuje się portfel efektywny jako taki portfel dla którego
- nie istnieje portfel, który ma niższe ryzyko przy danej oczekiwanej stopie zwrotu
- nie istnieje portfel, który ma wyższą oczekiwaną stopę zwrotu przy danym poziomie ryzyka.
Racjonalny inwestor powinien więc ograniczyć się do portfeli efektywnych.
Uogólnienia klasycznej teorii portfela
Uważny, Czytelnik zapewne zauważył, że inwestor może użyć odmiennych kryteriów przy konstrukcji portfela. Do najważniejszych należą modele oparte o
- inne miary ryzyka
- inne postaci funkcji użyteczności
- bardziej rozbudowane kryteria optymalizacji
- modele stochastycznej dominacji
- portfele specjalistyczne
Nie wszystkie powyższe klasy są rozłączne. Do najpopularniejszych "niestandardowych" miar ryzyka należą tzw niesymetryczne miary, związane uwypukleniem negatywnych skutków ryzyka: większą wagę przykłada się do ujemnych odchyleń od oczekiwanej stopy zwrotu. Zwykle używa się semiwariancji (semiodchylenia standardowego) oraz semiodchylenia przeciętnego, które uwzględniają tylko ujemne odchylenia od wartości oczekiwanej. Używane są również różnego rodzaju poziomy bezpieczeństwa zwykle określane (szacowane) jako prawdopodobieństwo, że stopa zwrotu będzie niższa od ustalonej (poziom bezpieczeństwa). Podobnie definiowane poziomy aspiracji jako prawdopodobieństwo, że stopa zwrotu będzie niższa od zakładanej (poziom aspiracji). W tych przypadkach zagadnienia optymalizacyjne stawia się analogicznie, chociaż w przypadku skomplikowanych miar rozwiązania mogą być trudne do uzyskania i analizy.
Z kolei postać funkcji użyteczności
Modele rynku finansowego
Teoretyczne modele rynku są dosyć ściśle związane z teorią portfela, co zapewne nie powinno dziwić
Model wyceny aktywów kapitałowych (CAPM)
Model arbitrażu cenowego (APT)
Przypisy
- ↑ Zauważmy, że założenie to trudno uzasadnić w przypadku portfela akcji, ale okazuje się że stosunkowo łatwo można omawiane procedury uogólnić tak by uniknąć tego typu ograniczeń, co również zrobimy w dalszej części.
- ↑ Idea ta została przedstawiona w słynnej pracy Markowitz, H. (1952), ‘Portfolio Selection’, Journal of Finance, 7(1), 77-91.
- ↑ Tak na prawdę to metoda ta znajduje ekstremum lub tzw. punkt siodłowy; musimy jeszcze sprawdzić czy jest to rzeczywiście minimum
- ↑ Wystarczy przejść do macierzowej reprezentacji układu równań liniowych.
- ↑ W zasadzie w każdej teorii portfela istniej jakaś funkcja użyteczności, nawet gdy nie jest explicite wymieniona.