Z Skrypty dla studentów Ekonofizyki UPGOW
(→Przykład: Proces MA(q)) |
|||
Linia 1: | Linia 1: | ||
- | [[Analiza Szeregów Czasowych]] | + | <center> |
+ | [[Analiza Szeregów Czasowych]]<br /> | ||
+ | [[Analiza Szeregów Czasowych/Dekompozycja szeregu czasowego |<<< Dekompozycja szeregu czasowego]] | [[Analiza Szeregów Czasowych/Techniki analizy szeregów czasowych |Techniki analizy szeregów czasowych >>>]] | ||
+ | </center> | ||
__TOC__ | __TOC__ |
Wersja z 18:29, 25 gru 2010
Analiza Szeregów Czasowych
<<< Dekompozycja szeregu czasowego | Techniki analizy szeregów czasowych >>>
Spis treści |
Stacjonarne procesy ARMA
Niektóre szeregi czasowe \( \{ X_t \} \) możemy przedstawić w formie układu równac różnicowych ze stałymi współczynnikami. Takie równania definiują rodzinę procesów parametrycznych zwanych Modelami Autoregresyjnymi ze Średnią Kroczącą (Autoregresive Moving Average Models) lub krótko ARMA.
Dla każdej funkcji autokwariancji \( \gamma (\cdot) \) takiej, że
- \( \lim_{h \ to \infty} \gamma (h) = 0 \ \)
oraz dla dowolnej stałej k > 0 jesteśmy w stanie znaleźć model ARMA z funkcją autokowariancji \( \gamma_X (\cdot) \) taką, że
- \( \gamma_X (h) = \gamma(h), ~~~h = 0, 1, \dots, k. \ \)
Tak określona klasa modeli to prawdopodobnie najważniejsza rodzina procesów spotykana w modelowaniu szeregów czasowych. Dodatkowa liniowość procesów ARMA pozwala na łatwą (bo liniową) predykcję zmian szeregu czasowego.
"Szum biały"
Matematycznie rzecz biorąc Gaussowski szum biały zdefiniowany jest jako pochodna procesu Wienera. Poissonowski biały szum zdefiniowany jest jako pochodna procesu Poisona. Na potrzeby tego kursu wystarczy nam nieco mniej ścisła i dużo prostsza definicja.
- Definicja (szum biały)
- Proces \( \{ Z_t \} \) nazywamy białym szumem ze średnią zero i wariancją \( \sigma^2 \) i oznaczamy jako
- \( \{ Z_t \} = BS (0,\sigma^2) [ = WN(0,\sigma^2) ] \ \)
wtedy i tylko wtedy gdy \( \{ Z_t \} \) posiada średnią zero i funkcję kowariancji \[ \gamma(h) = \left \{ {{\sigma^2, h = 0} \atop {0, h \ne 0}} \right. \] lub odpowiednio \[ \rho(h) = \left \{ {{1, h = 0} \atop {0, h \ne 0}} \right. \]
Jeżeli zmienne losowe \( Z_t \) mają takie same, niezależne od siebie rozkłady ze średnią zero i wariancją \( \sigma^2 \) to wtedy oznaczamy je
- \( Z_t = IID (0, \sigma^2). \)
Dość szeroka klasa procesów stochastycznych może być modelowana z użyciem białego szumu jako losowej siły napędzającej w układzie równań (liniowych równań różnicowych).
ARMA
- Definicja
- Proces \( \{ X_t, t = 0,\pm 1,\pm 2, \dots, \} \) nazywamy procesem ARMA(p,q) jeżeli jest on stacjonarny oraz jeżeli dla każdego t
- \( X_t = c + Z_t + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i Z_{t-i}.\,\) (ARMA1.1)
gdzie
- \( Z_t = BS (0, \sigma^2). \) (ARMA1,2)
Mówimy, że proces \( \{ X_t \} \) jest procesem ARMA(p,q) o średniej \(\mu\), jeżeli \( \{ X_t - \mu \} \) jest procesem ARMA(p,q).
Równanie (ARMA1.1) określające definicję procesu ARMA(p,q) możemy zapisać w nieco bardziej zwartej formie (pomijamy tu stały czynnik c, co w niczym nie zmienia poniższych dywagacji) \[ \varphi (B) X_t = \theta(B) Z_t, ~~~t = 1, \pm 1, \pm 2, \dots \ \] gdzie \( \varphi \) oraz \( \theta \) to wielomiany odpowiednio p-tego i q-tego stopnia.
- \( \varphi (u) = 1 - \varphi_1 u - \dots - \varphi_p u^p, \ \)
- \( \theta(u) = 1 + \theta_1 u + \dots + \theta_q u^q, \ \)
a operator B to operator cofnięcia w czasie, który już znamy. Wielomian \( \varphi \ \) nazywany jest wielomianem autoregresji, a wielomian \( \theta \ \) nazywamy wielomianem średniej kroczącej równań różnicowych (ARMA1.1).
Przykład: Proces MA(q)
Jeżeli \( \varphi(z) = 1 \ \) to
- \( X_t = \theta(B) Z_t \ \) (MA1.1)
i proces \( X_t \ \) nazywamy procesem średniej kroczącej rzędu q \( \equiv \) MA(q). Rozwiązaniem równania (MA1.1) jest proces stacjonarny. Gdy \( \theta_0 = 1, \theta_j = 0, ~j > q \ \) widzimy, że
- \( EX_t = E \theta(B) Z_t = E \sum_{j=0}^q \theta_j Z_{t-j} = \sum_{j=0}^q \theta_j E Z_{t-j} = 0, \ \) (średnia procesu jest 0),
- \( \gamma(h) = cov (X_{t+h}, X_t) = \left \{ {{\sigma^2 \sum_{j=0}^{q-|h|} \theta_j \theta{j+|h|}, |h| \le q} \atop {0, |h| > q}} \right. \ \)