Z Skrypty dla studentów Ekonofizyki UPGOW
(→Ortogonalizacja Grama-Schmidta) |
(→Ortogonalizacja Grama-Schmidta) |
||
Linia 31: | Linia 31: | ||
</source> | </source> | ||
- | == Ortogonalizacja Grama-Schmidta == | + | === Ortogonalizacja Grama-Schmidta === |
Operator rzutowania ortogonalnego wektora <math>\mathbf{v}</math> na wektor <math>\mathbf{u}</math> definiujemy jako: | Operator rzutowania ortogonalnego wektora <math>\mathbf{v}</math> na wektor <math>\mathbf{u}</math> definiujemy jako: | ||
Linia 40: | Linia 40: | ||
:<math>\mathbf{u}_2 = \mathbf{v}_2-\frac{(\mathbf{u}_1,\mathbf{v}_2)}{\|\mathbf{u}_1 \|}\mathbf{u}_1, </math> | :<math>\mathbf{u}_2 = \mathbf{v}_2-\frac{(\mathbf{u}_1,\mathbf{v}_2)}{\|\mathbf{u}_1 \|}\mathbf{u}_1, </math> | ||
:<math>\vdots</math> | :<math>\vdots</math> | ||
- | :<math>\mathbf{u}_k = \mathbf{v}_k-\sum_{j=1}^{k-1}\frac{(\mathbf{u}_j,\mathbf{v}_k)}{\|\mathbf{u} | + | :<math>\mathbf{u}_k = \mathbf{v}_k-\sum_{j=1}^{k-1}\frac{(\mathbf{u}_j,\mathbf{v}_k)}{\|\mathbf{u}_j \|}\mathbf{u}_j, </math> |
+ | |||
+ | Wektory można zortonormalizować | ||
+ | :<math>\mathbf{u}_k = \frac{\mathbf{u}_k}{\| \mathbf{u}_k\|,</math> | ||
+ | dla <math>k=1..N</math> | ||
- | |||
Wersja z 08:54, 25 lut 2011
Spis treści |
Literatura
- NUMERICAL LINEAR ALGEBRA Lloyd N. Trefethen and David Bau, III
- Tutorial
- wikibooks.org/wiki/GNU_Octave
Wektory
Wektor w przestrzeni euklidesowej N wymiarowej jest reprezentowany przez N liczb. Iloczyn skalarny dwóch wektorów \(\mathbf a\) oraz \(\mathbf b\) o oznaczany symbolem \(\mathbf a \cdot \mathbf b\) określony jest jako:
- \(\mathbf a \cdot \mathbf b = \sum_{i=1}^{N}a_i b_i\),
gdzie \(a_i\) to i-ty element wektora a. Można pokazać, że iloczyn ten jest też dany przez
- \(\mathbf a \cdot \mathbf b = \|\mathbf a\| \|\mathbf b\| \cos \theta\),
gdzie \(\theta\) jest kątem między \(\mathbf a\) a \(\mathbf b\).
Jeśli jeden wektorów jest wektorem o długości jeden to mnoże go przez dowolny inny wektor może być interpretowane jako rzutowanie na kierunek wyznaczony przez pierwszy wektor.
Baza
Zmiana bazy
Zmiana bazy i iloczyn skalarny
Mamy \((x,y)=\sum_{i=1}^{N}x_i y_j\)
b1=[1;1;1] b2=[1;0;1] b3=[1;0;-1] C=[b1,b2,b3] C'*C M=[b1'*b1,b1'*b2,b1'*b3;b2'*b1,b2'*b2,b2'*b3;b3'*b1,b3'*b2,b3'*b3]
Ortogonalizacja Grama-Schmidta
Operator rzutowania ortogonalnego wektora \(\mathbf{v}\) na wektor \(\mathbf{u}\) definiujemy jako:
Wówczas dla układu k wektorów \(\{\mathbf{v}_1, \ldots,\mathbf{v}_k\}\) proces przebiega następująco: \[\mathbf{u}_1 = \mathbf{v}_1,\] \[\mathbf{u}_2 = \mathbf{v}_2-\frac{(\mathbf{u}_1,\mathbf{v}_2)}{\|\mathbf{u}_1 \|}\mathbf{u}_1, \] \[\vdots\] \[\mathbf{u}_k = \mathbf{v}_k-\sum_{j=1}^{k-1}\frac{(\mathbf{u}_j,\mathbf{v}_k)}{\|\mathbf{u}_j \|}\mathbf{u}_j, \]
Wektory można zortonormalizować \[\mathbf{u}_k = \frac{\mathbf{u}_k}{\| \mathbf{u}_k\|,\] dla \(k=1..N\)
e1=b1 e2=b2-(e1'*b2)/(e1'*e1)*e1 e3=b3-( (e1'*b3)/(e1'*e1)*e1 + (e2'*b3)/(e2'*e2)*e2 )
E=[e1,e2,e3] quiver3([0,0,0],[0,0,0],[0,0,0], C(1,:), C(2,:), C(3,:), 0,'r') hold on quiver3([0,0,0],[0,0,0],[0,0,0], E(1,:), E(2,:), E(3,:), 0,'b') xlim([-1,1]) ylim([-1,1]) zlim([-1,1]) hold off
Wartości i wektory własne
phi=linspace(0, 2*pi, 30); X=cos(phi); Y=sin(phi); A=[X; Y]; plot(A(1,:),A(2,:),'bo'); hold on B=rand(2); B=B+B' A=B*A; plot(A(1,:),A(2,:),'ro'); [E,v]=eig(B) quiver([0,0],[0,0], E(1,:), E(2,:), 0,'g') hold off xlim([-3,3]) ylim([-3,3])
[phi,theta]=meshgrid (linspace(0, 2*pi, 30), linspace(0,pi,20) ); X=sin(theta).*cos(phi); Y=sin(theta).*sin(phi); Z=cos(theta); X=reshape(X,[prod(size(X)),1]) ; Y=reshape(Y,[prod(size(Y)),1]) ; Z=reshape(Z,[prod(size(Z)),1]) ; A=[X Y Z]'; plot3(A(1,:),A(2,:),A(3,:),'bo'); hold on B=rand(3); A=B*A; plot3(A(1,:),A(2,:),A(3,:),'ro'); quiver3([0,0,0],[0,0,0],[0,0,0], E(1,:), E(2,:), E(3,:), 0,'g') hold off xlim([-1,1]) ylim([-1,1]) zlim([-1,1])
Ćwiczenia:
- obliczyć współrzędne wektora \(a=(1,2,3)\) w bazie \((e_1+e_2...\)
- obliczyc rząd macierzy