Z Skrypty dla studentów Ekonofizyki UPGOW
Stacjonarność procesów stochastycznych
Do wyznaczania zależności pomiędzy zmiennymi losowymi użyteczna bywa funkcja kowariancji.
- Definicja 3.1
- Dla dwóch zmiennych losowych \( \{X_t, t \in T\}\ \) oraz \( \{Y_s, s \in T\}\ \) funkcja
- \( \begin{align} ~cov(X(r),Y(s)) = &E[(X_r - EX_r)(Y_s - EY_s)] = E(X_tY_s) - EX_t EY_s ~~~\text{dla} ~~~ r,s \in T \end{align} \)
określa liniową zależność pomiędzy powyższymi zmiennymi losowymi. Stopień współzależności owych zmiennych losowych można podać za pomocą tzw. współczynnika korelacji Pearsona \(r_{X,Y}\\)
\[ cov (X, Y) = r_{X,Y} \sigma_X \sigma_Y.\ \]
Wartość współczynnika korelacji Pearsona mieści się w przedziale domkniętym [-1, 1]. Im większa jego wartość bezwzględna, tym silniejsza jest zależność zmiennych losowych między zmiennymi. \(r_{X,Y} = 0\) oznacza brak liniowej zależności między cechami, \(r_{XY} = 1\) oznacza dokładną dodatnią liniową zależność między cechami, natomiast \(r_{XY} = -1\) oznacza dokładną ujemną liniową zależność między cechami, tzn. jeżeli zmienna \(X\) rośnie, to \(Y\) maleje i na odwrót.
Współczynnik korelacji liniowej można traktować jako znormalizowaną kowariancję. Korelacja przyjmuje zawsze wartości w zakresie [-1, 1], co pozwala uniezależnić analizę od dziedziny badanych zmiennych.
W przypadku gdy analizujemy szereg czasowy opisywany poprzez ewolucję jednej zmiennej losowej możemy mówić najwyżej o funkcji autokowariancji. Dla szeregu czasowego \( \{X_t, t \in T\}\ \) możemy taką funkcję zdefiniować następująco.
- Definicja 3.2
- Jeżeli \( \{X_t, t \in T\}\ \) jest procesem dla którego wariancja zmiennej losowej dla każdej chwili czasu \( \sigma_{X_t} \) jest skończona, wtedy funkcja autokowariancji procesu \( \{X_t\}\ \) zdefiniowana jest jako
- \( \begin{align} ~\gamma_X(r,s) = &K_{XX}(r,s) = cov(X(r),X(s)) = cov(X_r,X_s) = \\ &E[(X_r - EX_r)(X_s - EX_s)] = E(X_tX_s) - EX_t EX_s ~~~\text{dla} ~~~ r,s \in T \end{align} \)
- Definicja 3.3
- Szereg czasowy \( \{X_t, t \in \Z\}\ \), gdzie zbiór indeksów zdefiniowany jest jako \( \Z = \{0, \pm 1, \pm 2,\cdots \}\) nazywamy stacjonarnym (w sensie słabym) jeżeli spełnione są poniższe punkty
- \( \begin{align} (i) &~E | X_t |^2 < \infty ~~~ \text{for all} ~~~ t \in \Z \\ (ii) &~E X_t = m ~~~ \text{for all} ~~~ t \in \Z \\ (iii)&~\gamma_X(r,s) = \gamma_X(r+t,s+t) ~~~ \text{for all} ~~~ t \in \Z \end{align} \)
Uwagi
- Powyższa definicja odnosi się do tak zwanej słabej stacjonarności, stacjonarności w szerszym sensie lub stacjonarności rzędu dwa. Ma ona zastsowanie najczęściej podczas analizy szeregów czasowych. Na tym kursie analizy szeregów czasowych będzie to podstawowa definicja jaką będziemy rozpatrywali.
- Punkt \((iii)\ \) często zapisuje się w postaci
- \( \gamma_X(r+t,s+t) = \gamma_X(r-s,0) \!\)
- lub krótko
- \( \gamma_X(r-s,0) = \gamma(\tau) \, \mbox{ gdzie } \, \tau = t_1 - t_2 \)