Z Skrypty dla studentów Ekonofizyki UPGOW
Stochastyczne równania różniczkowe
W tym rozdziale zostaną opisane metody numeryczne, które służa do rozwiązywania stochastycznych równań różniczkowych typu:
\(\frac{dX(t)}{dt} = F(X(t), t) + G(X(t), t)\Gamma(t)\)
gdzie F i G to dowolne funkcje, a \(\Gamma(t)\) jest procesem losowym. W przypadku gdy rozpatrujemy biały szum Gaussowski to należy zwrócic szczególną uwagę na dylemat Stratonowicza-Ito.
\(dX(t)= F(X(t), t)dt + G(X(t), t) dW(t)\;\)
Proces Wienera
Oznacza to, że realizacja staje się funkcją ciągłą (wysokość skoków dąży do zera), ale jednocześnie nigdzie nie jest różniczkowalna (liczba skoków dąży do nieskończoności).
Przyrost \(W(t_2) - W(t_1)\) jest zmienna losową gaussowską o zerowej wartości średniej i wariancji \( = 2D(t_2 - t_1) \). Więc jego rozkład prawdopodobieństwa ma postać
- \(\Delta W(t) = W(t+\Delta t) - W(t) \;\)
i wzór (xx--CrossReference--eqn:11.12b-equation--xx) ma postać
Schemat Eulera dla równania z szumem addytywnym
Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych - schemat Eulera.