Z Skrypty dla studentów Ekonofizyki UPGOW
Stochastyczne równania różniczkowe
W tym rozdziale zostaną opisane metody numeryczne, które służa do rozwiązywania stochastycznych równań różniczkowych typu:
gdzie F i G to dowolne funkcje, a \Gamma(t) jest procesem losowym. W przypadku gdy rozpatrujemy biały szum Gaussowski to należy zwrócic szczególną uwagę na dylemat Stratonowicza-Ito.
dX(t)= F(X(t), t)dt + G(X(t), t) dW(t)\;
Proces Wienera
Proces Wienera jest rozwiązaniem następującego stochastycznego równania różniczkowego:
dX(t)= dW(t)\;.
Jego realizacja jest funkcją ciągłą, ale jednocześnie nigdzie nie jest różniczkowalna. Przyrost W(t_2) - W(t_1) jest zmienna losową gaussowską o zerowej wartości średniej i wariancji = 2D(t_2 - t_1) . Więc jego rozkład prawdopodobieństwa ma postać
- \Delta W(t) = W(t+\Delta t) - W(t) \;
i wzór ma postać
\langle [\Delta W(t)]^2 \rangle = \langle [W(t+\Delta t) - W(t)[^2 \rangle = 2D \Delta t
Schemat Eulera dla równania z szumem addytywnym
Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych - schemat Eulera.