MKZR:Modelowanie dynamiki instrumentów pochodnych
Z Skrypty dla studentów Ekonofizyki UPGOW
Geometryczny proces Wienera
Geometryczny proces Wienera jest procesem losowym, który jest rozwiązaniem równania
\(dX(t) = \mu X(t) dt + \sigma X(t) d W(t)\,\). Deterministyczna część tego równania stochastycznego jest członem liniowym i rozwiązanie dla przypadku \(\sigma=0\) jest w postaci eksponencjalnej \(x(t)\simeq e^{\mu t}\), co przypomina proces Ornsteina Uhlenbecka.