Procesy i Zjawiska Losowe

Z Skrypty dla studentów Ekonofizyki UPGOW

Procesy i zjawiska losowe

Skrypt dla studentów ekonofizyki


\( Pr \{ \xi \in (a, b)\} = \int_a^b p_{\xi}(x)dx \)

Oznaczmy przez \(\Omega\) zbiór, który nazwiemy przestrzenią. Niech \(A, B, C, ...\) będa podzbiorami zbioru \(\Omega\).

Sumą zbiorów nazywamy zbiór złożony ze wszystkich elementów należących do któregokolwiek z sumowanych zbiorów. Suma zbiorów \(A \) i \( B \) jest oznaczana przez \(A\cup B\). Tak więc:

\(A\cup B=\{x:x\in A\vee x\in B\}\)

Iloczyn (lub część wspólna, przekrój, przecięcie) zbiorów \( A \) i \( B \) to zbiór, do którego należą te elementy zbioru \( A \), które należą również do \( B \). Część wspólna zbiorów \( A \) i \( B \) jest oznaczana przez \(A\cap B\). Tak więc:

\(A\cap B=\{x:x\in A\wedge x\in B\}\).

Różnica zbiorów A\B - to zbiór złożony z tych elementów zbioru A, które nie należą do B:

\(A \setminus B = \{ x : x\in A \and x \notin B\}\)

Dopełnieniem \(A'\) zbioru \(A\) (w przestrzeni \(\Omega\)) nazywa się różnica zbiorów

\(A'=\Omega \setminus A = \{x \in \Omega\colon x \notin A\}\),

Zbiór pusty to zbiór, który nie zawiera żadnych elementów. Oznaczany jest symbolem \(\empty\) lub \(\varnothing\).


Spis teści

  1. Wprowadzenie
  2. Elementy teorii prawdopodobieństa
    1. Przestrzeń probabilistyczna
    2. Zmienna losowa
    3. Rozkłady prawdopodobieństwa zmiennej losowej
    4. Wiele zmiennych losowych-Wektor zmiennych losowych
    5. Rozkłady prawdobodobieństwa wielu zmiennych losowych
    6. Próby Bernouliego
    7. Twierdzenie Poissona i rozklad Poissona
  3. Procesy stochastyczne
  4. Proces Poissona
    1. Proces urodzin i śmierci
    2. Poissonowski ciąg impulsów: biały szum Poissona
    3. Uogólnienia procesu Poissona
    4. Równania ewolucji dla procesów Poissona; funkcja tworząca
  5. Błądzenie przypadkowe
  6. Proces Wienera -proces dyfuzji
  7. Biały szum gaussowski
  8. Stochastyczne równania różniczkowe
  9. Równanie Kramersa-Moyala
  10. Proste i odwrotne równanie Kołmogorowa. Równanie Fokkera-Plancka
  11. Równanie Ito a proces dyfuzji
  12. Równanie Ito i równanie Stratonowicza
  13. Twierdzenie Ito o różniczce funkcji procesu stochastycznego
  14. Przykłady zastosowań równań stochastycznych w ekonomii
    1. Geometryczny proces Wienera