Z Skrypty dla studentów Ekonofizyki UPGOW
Analiza Szeregów Czasowych <<< Modelowanie szeregów czasowych | Matlab / GNU Octave >>>
Spis treści |
Estymacja parametrów modeli
Szacowanie parametrów modeli rządzących szeregami czasowymi to niełatwe zagadnienie. Jest to również przedostatni krok w analizie szeregów czasowych. Ostatnim krokiem jest predykcja przyszłych wartości szeregu w oparciu o dane posiadane. ,
Aby oszacować jaki to model ARMA(p,q) stoi za analizowanym szeregiem czasowym musimy wykonać kilka kroków
- jakie p i q należy wybrać
- oszacować średnią oraz współczynniki AR \( \varphi_i \ \) oraz MA \( \theta_j \ \), i=1,...,p, j=1,...,q,
- oszacować wariancję szumu \(\sigma^2 \ \) dla wybranych parametrów,
- sprawdzić poprawność wybranego modelu (najlepiej dla różnych zestawów parametrów p i q).
Ostateczna decyzja, czy dany model dobrze reprezentuje dane zależy od kilku możliwych testów.
Zakładamy obecnie, że fitować będziemy model ARMA do danych których średnia wynosi 0
- \( \langle X_t \rangle = EX_t = 0. \)
Jeżeli \( \{ Y_t \} \) oznacza oryginalne dane, to \( X_t = Y_t - EY_t \).
Będziemy dopasowywać dane do modelu
- \( X_t - \varphi_1X_{t-1} - \dots - \varphi_p X_{t-p} = Z_t + \theta_1Z_{t-1} - \dots - \varphi_q Z_{t-q}, \{ Z_t \} = BS(0,\sigma^2) \ \)
Czyli dla wybranych przez na p i q celem będzie znalezienie wektorów \( \bar{\varphi} = (\varphi_1, \dots, \varphi_p) \) oraz \( \bar{\theta} = (\theta_1, \dots, \theta_q) \).
AR
W przypadku, gdy posiadane dane mogą być przybliżone poprzez model autoregresji rzędu p (tj: q = 0), dość dobrym estymatorem wektora \( \bar{\varphi} \) okazuje się być prosty algorytm porównujący autokowariancję próby oraz teoretyczną wyliczoną z modelu AR(p). Metoda ta nosi nazwę Yule-Walkera.
Metoda Yule-Walkera
Algorytm Durbina - Levinsona
Algorytm Burga
MA
Dla przypadków, gdy q > 0 metoda zaprezentowana wcześniej nie do końca zdaje egzamin. W tym przypadku posługujemy się algorytmem innowacyjnym.