MNNE:Algebra

Z Skrypty dla studentów Ekonofizyki UPGOW

Wektory

Wektor w przestrzeni euklidesowej N wymiarowej jest reprezentowany przez N liczb. Iloczyn skalarny dwóch wektorów \(\mathbf a\) oraz \(\mathbf b\) o oznaczany symbolem \(\mathbf a \cdot \mathbf b\) określony jest jako:

\(\mathbf a \cdot \mathbf b = \sum_{i=1}^{N}a_i b_i\),

gdzie \(a_i\) to i-ty element wektora a. Można pokazać, że iloczyn ten jest też dany przez

\(\mathbf a \cdot \mathbf b = \|\mathbf a\| \|\mathbf b\| \cos \theta\),

gdzie \(\theta\) jest kątem między \(\mathbf a\) a \(\mathbf b\).

Jeśli jeden wektorów jest wektorem o długości jeden to mnoże go przez dowolny inny wektor może być interpretowane jako rzutowanie na kierunek wyznaczony przez pierwszy wektor.

Baza

Zmiana bazy

Ćwiczenia: 
  • obliczyć współrzędne wektora \(a=(1,2,3)\) w bazie \((e_1+e_2...\)
  • obliczyc rząd macierzy