MNNE:Algebra
Z Skrypty dla studentów Ekonofizyki UPGOW
Wektory
Wektor w przestrzeni euklidesowej N wymiarowej jest reprezentowany przez N liczb. Iloczyn skalarny dwóch wektorów \(\mathbf a\) oraz \(\mathbf b\) o oznaczany symbolem \(\mathbf a \cdot \mathbf b\) określony jest jako:
- \(\mathbf a \cdot \mathbf b = \sum_{i=1}^{N}a_i b_i\),
gdzie \(a_i\) to i-ty element wektora a. Można pokazać, że iloczyn ten jest też dany przez
- \(\mathbf a \cdot \mathbf b = \|\mathbf a\| \|\mathbf b\| \cos \theta\),
gdzie \(\theta\) jest kątem między \(\mathbf a\) a \(\mathbf b\).
Jeśli jeden wektorów jest wektorem o długości jeden to mnoże go przez dowolny inny wektor może być interpretowane jako rzutowanie na kierunek wyznaczony przez pierwszy wektor.
Baza
Zmiana bazy
Ćwiczenia:
- obliczyć współrzędne wektora \(a=(1,2,3)\) w bazie \((e_1+e_2...\)
- obliczyc rząd macierzy