MKZR:Symulacje procesów losowych dyskretnych

Z Skrypty dla studentów Ekonofizyki UPGOW

Spis treści

Próby i schemat Bernoulliego

Próbą Bernoulliego nazywamy dowolne doświadczenie losowe, w którym pytam tylko o dwa możliwe wyniki, będące zdarzeniami przeciwnymi. Prawdopodobieństwo tego, że w schemacie Bernoulliego o n próbach otrzymamy k razy sukces jest jest dane przez rozkład dwumianowy:

\( p_n(k) = {n \choose k} \cdot p^k \cdot q^{n-k} = \frac{n!}{k! (n-k)!} \cdot p^k \cdot q^{n-k} \)

Przeprowadzmy symulację komputerową takiego procesu dla schematu Bernoulliego składającego się z szesciu prób z prawdopodobieństwem sukcesu \(p=0.6\). Dysponując jednorodnym generatorem liczb losowych z przedziału (0,1), łatwo możemy wygenerować rezultat próby Bernouliego. Korzystamy z faktu, że prawdopodobieństwo P zdarzenia że taka liczba losowa z przedziałuy (0,1) jest wieksza od \(0.6\) wynosi dokładnie \(p=0.6\). Ponieważ mamy sześć prób generujemy jednym poleceniem wektor:

rand(6,1)

a następnie wykonujemy na nim operację logiczną

rand(6,1)<0.6

i w wyniku otrzymujemy wektor zer i jedynek, przy czym jedynka odpowiada sukcesowi z prawdopodopieństwem 0.6 w jednej próbie. Eksperyment powtarzamy wiele razy, więc możemy wykorzystać drugi wskaźnik:

octave:87>  rand(6,10)<0.5 
ans =
 
   0   1   0   0   1   0   1   0   1   0
   0   0   1   1   0   1   0   1   0   0
   0   0   1   1   1   0   1   1   0   1
   1   1   1   0   1   0   1   1   0   0
   0   0   0   1   0   1   0   0   1   1
   1   1   0   1   1   1   1   0   0   0

Każda kolumna powyższej macierzy odpowiada jednemu eksperymentowi składającemu się z 6 zdarzeń

Chcemy wyliczyć prawdopodobieństwo z jakim sukces zajdzie dokładnie 3 razy, czyli częstość z jaką kolumna powyższej macierzy będzie zawierała dokładnie trzy jedynki. Można to zrobić sumując wszystkie rzędy tej macierzy wektora:

octave:88> sum(  rand(6,10)<0.5  )
ans =
 
   1   2   5   1   2   2   0   4   3   2

Szum dychotomiczny

Proces Poissona

Ruch Browna