MKZR:Stochastyczne równania różniczkowe

Z Skrypty dla studentów Ekonofizyki UPGOW

(Różnice między wersjami)
(Stochastyczne równania różniczkowe)
(Schemat Eulera-Maruyamy dla równań stochastycznych)
Linia 21: Linia 21:
Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych jest schemat Eulera. Część deterministyczną równania stochastycznego traktujemy w taki sam sposób jak w schemacie Eulera dla równań różniczkowych zwyczajnych. Niech h oznacza krok  całkowania i oś czasowa będzie zdyskretyzowana na przedzialy <math>t_{i-1},t_{i},t_{i+1}</math> oraz <math>h=t_{i}-t_{i-1}</math>.  Wtedy część deterministyczna równania stochastycznego przyjmuje postać:
Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych jest schemat Eulera. Część deterministyczną równania stochastycznego traktujemy w taki sam sposób jak w schemacie Eulera dla równań różniczkowych zwyczajnych. Niech h oznacza krok  całkowania i oś czasowa będzie zdyskretyzowana na przedzialy <math>t_{i-1},t_{i},t_{i+1}</math> oraz <math>h=t_{i}-t_{i-1}</math>.  Wtedy część deterministyczna równania stochastycznego przyjmuje postać:
-
<math>X(t_i) = X(t_{i-1}) + \int_{t_{i-1}}^{t_{i}} F(X(t), t) dt \simeq X(t_{i-1}) + F(X(t_{i-1}, t_{i-1}) h  </math>
+
:<math>X(t_i) = X(t_{i-1}) + \int_{t_{i-1}}^{t_{i}} F(X(t), t) dt \simeq X(t_{i-1}) + F(X(t_{i-1}, t_{i-1}) h  </math>
Aby całkować część stochastyczną potrzebujemy formuły na przyrost skończony procesu Wienera:
Aby całkować część stochastyczną potrzebujemy formuły na przyrost skończony procesu Wienera:
-
<math> \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt =\;\int_{t_{i-1}}^{t_{i}} dW(t) = W(t_{i})-W(t_{i-1})</math>
+
:<math> \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt =\;\int_{t_{i-1}}^{t_{i}} dW(t) = W(t_{i})-W(t_{i-1})</math>
Wiemy, że proces Wienera jest procesem o [[PIZL:Proces_Wienera_i_proces_dyfuzji#PROCES_WIENERA_W.28t.29|przyrostach niezależnych]], które są  gaussowską zmienna losową o zerowej wartości średniej i wariancji   
Wiemy, że proces Wienera jest procesem o [[PIZL:Proces_Wienera_i_proces_dyfuzji#PROCES_WIENERA_W.28t.29|przyrostach niezależnych]], które są  gaussowską zmienna losową o zerowej wartości średniej i wariancji   
Linia 33: Linia 33:
Tak więc widać, że w schemacie Eulera całkę typu <math> \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt </math> należy zastąpić w każdym kroku całkowania gaussowską zmienną losową o wariancji proporcjonalnej do kroku całkowania h. Ponieważ z reguły dysponujemy gaussowskich generatorem liczb losowych  o jednostkowej wariancji N(0,1), można zapisać:
Tak więc widać, że w schemacie Eulera całkę typu <math> \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt </math> należy zastąpić w każdym kroku całkowania gaussowską zmienną losową o wariancji proporcjonalnej do kroku całkowania h. Ponieważ z reguły dysponujemy gaussowskich generatorem liczb losowych  o jednostkowej wariancji N(0,1), można zapisać:
-
<math> \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt = \sqrt{2 h} N(0,1) </math>
+
:<math> \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt = \sqrt{2 h} N(0,1) </math>
Ten zapis pokazuje też ważną cechę przy obliczaniu aproksymacji rozwiązań stochastycznych - najniższy rząd w h jest nie O(h) ale <math>O(h^{1/2})</math>.
Ten zapis pokazuje też ważną cechę przy obliczaniu aproksymacji rozwiązań stochastycznych - najniższy rząd w h jest nie O(h) ale <math>O(h^{1/2})</math>.
Linia 42: Linia 42:
Korzystając w powyższych faktów, możemy zapisać pełny schemat Eulera-Maruyamy dla równania stochastycznego (Ito):
Korzystając w powyższych faktów, możemy zapisać pełny schemat Eulera-Maruyamy dla równania stochastycznego (Ito):
-
<math>X(t_i) = X(t_{i-1}) + F(X(t_{i-1}, t_{i-1}) h  + \sqrt{h}G(X(t_{t-1}), t_{t-1})  N(0,1)</math>.
+
:<math>X(t_i) = X(t_{i-1}) + F(X(t_{i-1}, t_{i-1}) h  + \sqrt{h}G(X(t_{t-1}), t_{t-1})  N(0,1)</math>.

Wersja z 20:34, 31 mar 2016

Spis treści

Stochastyczne równania różniczkowe

W tym rozdziale zostaną opisane metody numeryczne, które służa do rozwiązywania stochastycznych równań różniczkowych typu:

\[\frac{dX(t)}{dt} = F(X(t), t) + G(X(t), t)\Gamma(t)\]

gdzie F i G to dowolne funkcje, a \(\Gamma(t)\) jest procesem losowym. Najczęstszym przypadek to taki w którym \(\Gamma(t)\) to biały szum Gaussowski. Tak zapisane równanie nie jest precyzyjnie określone ze względu na dylemat Stratonowicza-Ito. Dlatego poprawne jest zapisanie równanie Ito w postaci:

\[dX(t)= F(X(t), t)dt + G(X(t), t) dW(t)\;\]

Nie zmienia to ogólności, gdyż jak wiadomo każde równanie zapisane w interpretacji Stratonowicza ma swój odpowiednik Ito. Dla potrzeb metod numerycznych będziemy rozpatrywać zawsze równania Ito, a jeśli pojawią się równania Stratonowicza to będziemy je transpormować do postaci Ito.



Schemat Eulera-Maruyamy dla równań stochastycznych

Najprostszą metodą aproksymacji numerycznej równania stochastycznego jest podobnie jak w przypadku równań różniczkowych zwyczajnych jest schemat Eulera. Część deterministyczną równania stochastycznego traktujemy w taki sam sposób jak w schemacie Eulera dla równań różniczkowych zwyczajnych. Niech h oznacza krok całkowania i oś czasowa będzie zdyskretyzowana na przedzialy \(t_{i-1},t_{i},t_{i+1}\) oraz \(h=t_{i}-t_{i-1}\). Wtedy część deterministyczna równania stochastycznego przyjmuje postać:

\[X(t_i) = X(t_{i-1}) + \int_{t_{i-1}}^{t_{i}} F(X(t), t) dt \simeq X(t_{i-1}) + F(X(t_{i-1}, t_{i-1}) h \]


Aby całkować część stochastyczną potrzebujemy formuły na przyrost skończony procesu Wienera:

\[ \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt =\;\int_{t_{i-1}}^{t_{i}} dW(t) = W(t_{i})-W(t_{i-1})\]

Wiemy, że proces Wienera jest procesem o przyrostach niezależnych, które są gaussowską zmienna losową o zerowej wartości średniej i wariancji \(2(t_{i} − t_{i-1})=2 h\).

Tak więc widać, że w schemacie Eulera całkę typu \( \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt \) należy zastąpić w każdym kroku całkowania gaussowską zmienną losową o wariancji proporcjonalnej do kroku całkowania h. Ponieważ z reguły dysponujemy gaussowskich generatorem liczb losowych o jednostkowej wariancji N(0,1), można zapisać:

\[ \int_{t_{i-1}}^{t_{i}} \Gamma(t) dt = \sqrt{2 h} N(0,1) \]

Ten zapis pokazuje też ważną cechę przy obliczaniu aproksymacji rozwiązań stochastycznych - najniższy rząd w h jest nie O(h) ale \(O(h^{1/2})\).

Ponadto z takiego sformułowania widać też, że zmiany procesu Wienera w stosunku do przyrostów czasu są rozbieżne w granicy \(h\to 0\).


Korzystając w powyższych faktów, możemy zapisać pełny schemat Eulera-Maruyamy dla równania stochastycznego (Ito):

\[X(t_i) = X(t_{i-1}) + F(X(t_{i-1}, t_{i-1}) h + \sqrt{h}G(X(t_{t-1}), t_{t-1}) N(0,1)\].


Gaussowskie zmienne losowe możemy otrzymać np. korzystając z algorytmu Box-a Mullera.

Schemat Eulera-Maruyamy dla układu równań stochastycznych

Schemat Eulera-Maruyamy można uogólnić na układy równań stochastycznych. Niech \(\mathbf X(t)\) będzie wektorem o składowych \[\mathbf X(t)=( X^1(t),X^2(t),...,X^n(t))\]. Układ równań stochastycznych (Ito) można zapisać w ogólnej postaci:

\[d X^i(t)= F^i(\mathbf X(t), t)dt + \sum_{j=1}^{n} G^{i,j}(\mathbf X(t), t) dW^j(t)\;\]\; j=1,2,...,n,

gdzie \(W^i(t),\;W^j(t)\) są niezależnymi procesami Wienera dla \(i\neq j\), \(F^i\) oznacza wektor drytfu a \(G^{i,j}\) jest macierzą \(n \times n\) funkcji.

Wtedy schemat Eulera-Maruyamy ma postać:

\( X^j(t_i) = X^j(t_{i-1}) + F^j (\mathbf X(t_{i-1}), t_{i-1}) h + \sqrt{h} \sum_{k=1}^{n} G^{j,k}(\mathbf X(t), t) N^k(0,1)\; \)

Schemat Milsteina

Schemat Milsteina jest dany wzorem interacyjnym:

\(\displaystyle X(t_i) = X(t_{i-1}) + F(X(t_{i-1}, t_{i-1}) h - \) 
\(
\frac{1}{2}G(X(t_{i-1},t-1)G'(X(t_{i-1},t-1) h  + \sqrt{h}G(X(t_{t-1}), t_{t-1})  N(0,1)\).

W stosunku do schematy Eulera-Maruyamy zawiera on dodatkowy składnik, proporcjonalny do O(h):

\[- \frac{1}{2}G(X(t_{i-1},t-1)G'(X(t_{i-1},t-1) h\].

Ta poprawka powoduje, że powyższy schemat jest pierwszego rzędu w sensie silnym w przeciwieństwie do schematu Eulera-Maruyamy, ktry jest rzędu 1/2.